1
|
Ong AAL, Tan J, Bhadra M, Dezanet C, Patil KM, Chong MS, Kierzek R, Decout JL, Roca X, Chen G. RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau Pre-mRNA Alternative Splicing. Molecules 2019; 24:molecules24163020. [PMID: 31434312 PMCID: PMC6720520 DOI: 10.3390/molecules24163020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing of tau pre-mRNA is regulated by a 5' splice site (5'ss) hairpin present at the exon 10-intron 10 junction. Single mutations within the hairpin sequence alter hairpin structural stability and/or the binding of splicing factors, resulting in disease-causing aberrant splicing of exon 10. The hairpin structure contains about seven stably formed base pairs and thus may be suitable for targeting through antisense strands. Here, we used antisense peptide nucleic acids (asPNAs) to probe and target the tau pre-mRNA exon 10 5'ss hairpin structure through strand invasion. We characterized by electrophoretic mobility shift assay the binding of the designed asPNAs to model tau splice site hairpins. The relatively short (10-15 mer) asPNAs showed nanomolar binding to wild-type hairpins as well as a disease-causing mutant hairpin C+19G, albeit with reduced binding strength. Thus, the structural stabilizing effect of C+19G mutation could be revealed by asPNA binding. In addition, our cell culture minigene splicing assay data revealed that application of an asPNA targeting the 3' arm of the hairpin resulted in an increased exon 10 inclusion level for the disease-associated mutant C+19G, probably by exposing the 5'ss as well as inhibiting the binding of protein factors to the intronic spicing silencer. On the contrary, the application of asPNAs targeting the 5' arm of the hairpin caused an increased exon 10 exclusion for a disease-associated mutant C+14U, mainly by blocking the 5'ss. PNAs could enter cells through conjugation with amino sugar neamine or by cotransfection with minigene plasmids using a commercially available transfection reagent.
Collapse
Affiliation(s)
- Alan Ann Lerk Ong
- NTU Institute for Health Technologies (HeathTech NTU), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiazi Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Malini Bhadra
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Clément Dezanet
- University Grenoble Alpes/CNRS, Département de Pharmacochimie Moléculaire, ICMG FR 2607, UMR 5063, 470 Rue de la Chimie, F-38041 Grenoble, France
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Mei Sian Chong
- Geriatic Education & Research Institute, 2 Yishun Central 2, Singapore 768024, Singapore
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jean-Luc Decout
- University Grenoble Alpes/CNRS, Département de Pharmacochimie Moléculaire, ICMG FR 2607, UMR 5063, 470 Rue de la Chimie, F-38041 Grenoble, France
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
2
|
Ong AAL, Toh DFK, Krishna MS, Patil KM, Okamura K, Chen G. Incorporating 2-Thiouracil into Short Double-Stranded RNA-Binding Peptide Nucleic Acids for Enhanced Recognition of A-U Pairs and for Targeting a MicroRNA Hairpin Precursor. Biochemistry 2019; 58:3444-3453. [PMID: 31318532 DOI: 10.1021/acs.biochem.9b00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemically modified short peptide nucleic acids (PNAs) recognize RNA duplexes under near physiological conditions by major-groove PNA·RNA-RNA triplex formation and show great promise for the development of RNA-targeting probes and therapeutics. Thymine (T) and uracil (U) are often incorporated into PNAs to recognize A-U pairs through major-groove T·A-U and U·A-U base triple formation. Incorporation of a modified nucleobase, 2-thiouracil (s2U), into triplex-forming oligonucleotides stabilizes both DNA and RNA triplexes. Thiolation of uracil causes a decrease in the dehydration energy penalty for triplex formation as well as a decrease in the pKa of the N3 atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions, similar to the previously reported thiolation effect of pseudoisocytosine (J to L substitution). Here, we incorporated s2U into short PNAs, followed by binding studies of a series of s2U-modified PNAs. We demonstrated by nondenaturing polyacrylamide gel electrophoresis and thermal melting experiments that s2U and L incorporated into dsRNA-binding PNAs (dbPNAs) enhance the recognition of A-U and G-C pairs, respectively, in RNA duplexes in a position-independent manner, with no appreciable binding to the DNA duplex. Combining s2U and L modifications in dbPNAs facilitates enhanced recognition of dsRNAs and maintains selective binding to dsRNAs over ssRNAs. We further demonstrated through a cell-free assay the application of the s2U- and L-modified dbPNAs (8-mer, with a molecular mass of ∼2.3 kDa) in the inhibition of the pre-microRNA-198 maturation in a substrate-specific manner. Thus, s2U-modified dbPNAs may be generally useful for the enhanced and selective recognition of RNA duplexes and for the regulation of RNA functions.
Collapse
Affiliation(s)
- Alan Ann Lerk Ong
- NTU Institute for Health Technologies (HeathTech NTU), Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Katsutomo Okamura
- Division of Biological Sciences , Nara Institute of Science and Technology , 8916-5 Takayama , Ikoma , Nara 630-0192 , Japan
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
3
|
Ong AAL, Toh DFK, Patil KM, Meng Z, Yuan Z, Krishna MS, Devi G, Haruehanroengra P, Lu Y, Xia K, Okamura K, Sheng J, Chen G. General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase. Biochemistry 2019; 58:1319-1331. [PMID: 30775913 DOI: 10.1021/acs.biochem.8b01313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemically modified peptide nucleic acids (PNAs) show great promise in the recognition of RNA duplexes by major-groove PNA·RNA-RNA triplex formation. Triplex formation is favored for RNA duplexes with a purine tract within one of the RNA duplex strands, and is severely destabilized if the purine tract is interrupted by pyrimidine residues. Here, we report the synthesis of a PNA monomer incorporated with an artificial nucleobase S, followed by the binding studies of a series of S-modified PNAs. Our data suggest that an S residue incorporated into short 8-mer dsRNA-binding PNAs (dbPNAs) can recognize internal Watson-Crick C-G and U-A, and wobble U-G base pairs (but not G-C, A-U, and G-U pairs) in RNA duplexes. The short S-modified PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. Interestingly, replacement of the C residue in an S·C-G triple with a 5-methyl C results in the disruption of the triplex, probably due to a steric clash between S and 5-methyl C. Previously reported PNA E base shows recognition of U-A and A-U pairs, but not a U-G pair. Thus, S-modified dbPNAs may be uniquely useful for the general recognition of RNA U-G, U-A, and C-G pairs. Shortening the succinyl linker of our PNA S monomer by one carbon atom to have a malonyl linker causes a severe destabilization of triplex formation. Our experimental and modeling data indicate that part of the succinyl moiety in a PNA S monomer may serve to expand the S base forming stacking interactions with adjacent PNA bases.
Collapse
Affiliation(s)
- Alan Ann Lerk Ong
- NTU Institute for Health Technologies (HeathTech NTU), Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Zhenyu Meng
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Zhen Yuan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore , Singapore , 117604.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore , 639798
| | - Jia Sheng
- Department of Chemistry and The RNA Institute , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
4
|
Kesy J, Patil KM, Kumar SR, Shu Z, Yong HY, Zimmermann L, Ong AAL, Toh DFK, Krishna MS, Yang L, Decout JL, Luo D, Prabakaran M, Chen G, Kierzek E. A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure. Bioconjug Chem 2019; 30:931-943. [PMID: 30721034 DOI: 10.1021/acs.bioconjchem.9b00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure. Influenza A virion consists of eight segments of negative-strand viral RNA (vRNA), all of which contain a highly conserved panhandle duplex structure formed between the first 13 nucleotides at the 5' end and the last 12 nucleotides at the 3' end. Here, we report our binding and cell culture anti-influenza assays of a short 10-mer chemically modified double-stranded RNA (dsRNA)-binding peptide nucleic acid (PNA) designed to bind to the panhandle duplex structure through novel major-groove PNA·RNA2 triplex formation. We demonstrated that incorporation of chemically modified PNA residues thio-pseudoisocytosine (L) and guanidine-modified 5-methyl cytosine (Q) previously developed by us facilitates the sequence-specific recognition of Watson-Crick G-C and C-G pairs, respectively, at physiologically relevant conditions. Significantly, the chemically modified dsRNA-binding PNA (dbPNA) shows selective binding to the dsRNA region in panhandle structure over a single-stranded RNA (ssRNA) and a dsDNA containing the same sequence. The panhandle structure is not accessible to traditional antisense DNA or RNA with a similar length. Conjugation of the dbPNA with an aminosugar neamine enhances the cellular uptake. We observed that 2-5 μM dbPNA-neamine conjugate results in a significant reduction of viral replication. In addition, the 10-mer dbPNA inhibits innate immune receptor RIG-I binding to panhandle structure and thus RIG-I ATPase activity. These findings would provide the foundation for developing novel dbPNAs for the detection of influenza viral RNAs and therapeutics with optimal antiviral and immunomodulatory activities.
Collapse
Affiliation(s)
- Julita Kesy
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | | | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Hui Yee Yong
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 636921 , Singapore
| | - Louis Zimmermann
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Jean-Luc Decout
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Dahai Luo
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory, 1 Research Link , National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| |
Collapse
|
5
|
Patil KM, Toh DFK, Yuan Z, Meng Z, Shu Z, Zhang H, Ong A, Krishna MS, Lu L, Lu Y, Chen G. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Nucleic Acids Res 2018; 46:7506-7521. [PMID: 30011039 PMCID: PMC6125629 DOI: 10.1093/nar/gky631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
Double-stranded RNA (dsRNA) structures form triplexes and RNA-protein complexes through binding to single-stranded RNA (ssRNA) regions and proteins, respectively, for diverse biological functions. Hence, targeting dsRNAs through major-groove triplex formation is a promising strategy for the development of chemical probes and potential therapeutics. Short (e.g., 6-10 mer) chemically-modified Peptide Nucleic Acids (PNAs) have been developed that bind to dsRNAs sequence specifically at physiological conditions. For example, a PNA incorporating a modified base thio-pseudoisocytosine (L) has an enhanced recognition of a G-C pair in an RNA duplex through major-groove L·G-C base triple formation at physiological pH, with reduced pH dependence as observed for C+·G-C base triple formation. Currently, an unmodified T base is often incorporated into PNAs to recognize a Watson-Crick A-U pair through major-groove T·A-U base triple formation. A substitution of the 5-methyl group in T by hydrogen and halogen atoms (F, Cl, Br, and I) causes a decrease of the pKa of N3 nitrogen atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions. Here, we synthesized a series of PNAs incorporating uracil and halouracils, followed by binding studies by non-denaturing polyacrylamide gel electrophoresis, circular dichroism, and thermal melting. Our results suggest that replacing T with uracil and halouracils may enhance the recognition of an A-U pair by PNA·RNA2 triplex formation in a sequence-dependent manner, underscoring the importance of local stacking interactions. Incorporating bromouracils and chlorouracils into a PNA results in a significantly reduced pH dependence of triplex formation even for PNAs containing C bases, likely due to an upshift of the apparent pKa of N3 atoms of C bases. Thus, halogenation and other chemical modifications may be utilized to enhance hydrogen bonding of the adjacent base triples and thus triplex formation. Furthermore, our experimental and computational modelling data suggest that PNA·RNA2 triplexes may be stabilized by incorporating a BrUL step but not an LBrU step, in dsRNA-binding PNAs.
Collapse
Affiliation(s)
- Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhen Yuan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhenyu Meng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Haiping Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
6
|
Jasiński M, Kulik M, Wojciechowska M, Stolarski R, Trylska J. Interactions of 2'-O-methyl oligoribonucleotides with the RNA models of the 30S subunit A-site. PLoS One 2018; 13:e0191138. [PMID: 29351348 PMCID: PMC5774723 DOI: 10.1371/journal.pone.0191138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
Synthetic oligonucleotides targeting functional regions of the prokaryotic rRNA could be promising antimicrobial agents. Indeed, such oligonucleotides were proven to inhibit bacterial growth. 2’-O-methylated (2’-O-Me) oligoribonucleotides with a sequence complementary to the decoding site in 16S rRNA were reported as inhibitors of bacterial translation. However, the binding mode and structures of the formed complexes, as well as the level of selectivity of the oligonucleotides between the prokaryotic and eukaryotic target, were not determined. We have analyzed three 2’-O-Me oligoribonucleotides designed to hybridize with the models of the prokaryotic rRNA containing two neighboring aminoglycoside binding pockets. One pocket is the paromomycin/kanamycin binding site corresponding to the decoding site in the small ribosomal subunit and the other one is the close-by hygromycin B binding site whose dynamics has not been previously reported. Molecular dynamics (MD) simulations, as well as isothermal titration calorimetry, gel electrophoresis and spectroscopic studies have shown that the eukaryotic rRNA model is less conformationally stable (in terms of hydrogen bonds and stacking interactions) than the corresponding prokaryotic one. In MD simulations of the eukaryotic construct, the nucleotide U1498, which plays an important role in correct positioning of mRNA during translation, is flexible and spontaneously flips out into the solvent. In solution studies, the 2’-O-Me oligoribonucleotides did not interact with the double stranded rRNA models but all formed stable complexes with the single-stranded prokaryotic target. 2’-O-Me oligoribonucleotides with one and two mismatches bound less tightly to the eukaryotic target. This shows that at least three mismatches between the 2’-O-Me oligoribonucleotide and eukaryotic rRNA are required to ensure target selectivity. The results also suggest that, in the ribosome environment, the strand invasion is the preferred binding mode of 2’-O-Me oligoribonucleotides targeting the aminoglycoside binding sites in 16S rRNA.
Collapse
Affiliation(s)
- Maciej Jasiński
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Marta Kulik
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Ryszard Stolarski
- Department of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
7
|
Toh DFK, Patil KM, Chen G. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids. J Vis Exp 2017:56221. [PMID: 28994801 PMCID: PMC5752312 DOI: 10.3791/56221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral peptide-like backbone. PNAs can be synthesized relatively easily by the manual Boc-chemistry solid-phase peptide synthesis method. PNAs are purified by reverse-phase HPLC, followed by molecular weight characterization by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Non-denaturing polyacrylamide gel electrophoresis (PAGE) technique facilitates the imaging of the triplex formation, because carefully designed free RNA duplex constructs and PNA bound triplexes often show different migration rates. Non-denaturing PAGE with ethidium bromide post staining is often an easy and informative technique for characterizing the binding affinities and specificities of PNA oligomers. Typically, multiple RNA hairpins or duplexes with single base pair mutations can be used to characterize PNA binding properties, such as binding affinities and specificities. 2-Aminopurine is an isomer of adenine (6-aminopurine); the 2-aminopurine fluorescence intensity is sensitive to local structural environment changes, and is suitable for the monitoring of triplex formation with the 2-aminopurine residue incorporated near the PNA binding site. 2-Aminopurine fluorescence titration can also be used to confirm the binding selectivity of modified PNAs towards targeted double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). UV-absorbance-detected thermal melting experiments allow the measurement of the thermal stability of PNA-RNA duplexes and PNA·RNA2 triplexes. Here, we describe the synthesis and purification of PNA oligomers incorporating modified residues, and describe biochemical and biophysical methods for characterization of the recognition of RNA duplexes by the modified PNAs.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University;
| |
Collapse
|
8
|
Toh DFK, Devi G, Patil KM, Qu Q, Maraswami M, Xiao Y, Loh TP, Zhao Y, Chen G. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex. Nucleic Acids Res 2016; 44:9071-9082. [PMID: 27596599 PMCID: PMC5100590 DOI: 10.1093/nar/gkw778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson-Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Qiuyu Qu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yunyun Xiao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Teck Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|