1
|
Krystosek JT, Bishop DK. Chk2 homolog Mek1 limits exonuclease 1-dependent DNA end resection during meiotic recombination in Saccharomyces cerevisiae. Genetics 2024; 228:iyae112. [PMID: 39005070 PMCID: PMC11373520 DOI: 10.1093/genetics/iyae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The conserved Rad2/XPG family 5'-3' exonuclease, exonuclease 1 (Exo1), plays many roles in DNA metabolism including during resolution of DNA double-strand breaks via homologous recombination. Prior studies provided evidence that the end resection activity of Exo1 is downregulated in yeast and mammals by Cdk1/2 family cyclin-dependent and checkpoint kinases, including budding yeast kinase Rad53 which functions in mitotic cells. Here, we provide evidence that the master meiotic kinase Mek1, a paralog of Rad53, limits 5'-3' single-strand resection at the sites of programmed meiotic DNA breaks. Mutational analysis suggests that the mechanism of Exo1 suppression by Mek1 differs from that of Rad53.
Collapse
Affiliation(s)
- Jennifer T Krystosek
- Department of Radiation and Cellular Oncology/Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E 58th Street, CLSC 817, Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology/Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E 58th Street, CLSC 817, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Grubb J, Bishop DK. Chk2 homologue Mek1 limits Exo1-dependent DNA end resection during meiotic recombination in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589255. [PMID: 38645032 PMCID: PMC11030327 DOI: 10.1101/2024.04.12.589255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The conserved Rad2/XPG family 5'-3' exonuclease, Exonuclease 1 (Exo1), plays many roles in DNA metabolism including during resolution of DNA double strand breaks (DSBs) via homologous recombination. Prior studies provided evidence that the end-resection activity of Exo1 is downregulated in yeast and mammals by Cdk1/2 family cyclin-dependent and checkpoint kinases, including budding yeast kinase Rad53 which functions in mitotic cells. Here we provide evidence that the master meiotic kinase Mek1, a paralogue of Rad53, limits 5'-3' single strand resection at the sites of programmed meiotic DNA breaks. Mutational analysis suggests that the mechanism of Exo1 suppression by Mek1 differs from that of Rad53. Article Summary Meiotic recombination involves formation of programmed DNA double strand breaks followed by 5' to 3' single strand specific resection by nucleases including Exo1. We find that the activity of budding yeast Exo1 is downregulated during meiotic recombination by the master meiotic kinase Mek1. The mechanism of downregulation of Exo1 by Mek1 in meiosis does not depend on the same phospho-sites as those used by the mitotic kinase Rad53, a relative of Mek1 that downregulates Exo1 in mitosis.
Collapse
|
3
|
Reitz D, Grubb J, Bishop DK. A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability. PLoS Genet 2019; 15:e1008217. [PMID: 31790385 PMCID: PMC6907854 DOI: 10.1371/journal.pgen.1008217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/12/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
During meiosis, homologous recombination repairs programmed DNA double-stranded breaks. Meiotic recombination physically links the homologous chromosomes (“homologs”), creating the tension between them that is required for their segregation. The central recombinase in this process is Dmc1. Dmc1’s activity is regulated by its accessory factors including the heterodimeric protein Mei5-Sae3 and Rad51. We use a gain-of-function dmc1 mutant, dmc1-E157D, that bypasses Mei5-Sae3 to gain insight into the role of this accessory factor and its relationship to mitotic recombinase Rad51, which also functions as a Dmc1 accessory protein during meiosis. We find that Mei5-Sae3 has a role in filament formation and stability, but not in the bias of recombination partner choice that favors homolog over sister chromatids. Analysis of meiotic recombination intermediates suggests that Mei5-Sae3 and Rad51 function independently in promoting filament stability. In spite of its ability to load onto single-stranded DNA and carry out recombination in the absence of Mei5-Sae3, recombination promoted by the Dmc1 mutant is abnormal in that it forms foci in the absence of DNA breaks, displays unusually high levels of multi-chromatid and intersister joint molecule intermediates, as well as high levels of ectopic recombination products. We use super-resolution microscopy to show that the mutant protein forms longer foci than those formed by wild-type Dmc1. Our data support a model in which longer filaments are more prone to engage in aberrant recombination events, suggesting that filament lengths are normally limited by a regulatory mechanism that functions to prevent recombination-mediated genome rearrangements. During meiosis, two rounds of division follow a single round of DNA replication to create the gametes for biparental reproduction. The first round of division requires that the homologous chromosomes become physically linked to one another to create the tension that is necessary for their segregation. This linkage is achieved through DNA recombination between the two homologous chromosomes, followed by resolution of the recombination intermediate into a crossover. Central to this process is the meiosis-specific recombinase Dmc1, and its accessory factors, which provide important regulatory functions to ensure that recombination is accurate, efficient, and occurs predominantly between homologous chromosomes, and not sister chromatids. To gain insight into the regulation of Dmc1 by its accessory factors, we mutated Dmc1 such that it was no longer dependent on its accessory factor Mei5-Sae3. Our analysis reveals that Dmc1 accessory factors Mei5-Sae3 and Rad51 have independent roles in stabilizing Dmc1 filaments. Furthermore, we find that although Rad51 is required for promoting recombination between homologous chromosomes, Mei5-Sae3 is not. Lastly, we show that our Dmc1 mutant forms abnormally long filaments, and high levels of aberrant recombination intermediates and products. These findings suggest that filaments are actively maintained at short lengths to prevent deleterious genome rearrangements.
Collapse
Affiliation(s)
- Diedre Reitz
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Douglas K. Bishop
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
Abstract
Homologous recombination is fundamental to sexual reproduction, facilitating accurate segregation of homologous chromosomes at the first division of meiosis, and creating novel allele combinations that fuel evolution. Following initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs), homologous pairing and DNA strand exchange form joint molecule (JM) intermediates that are ultimately resolved into crossover and noncrossover repair products. Physical monitoring of the DNA steps of meiotic recombination in Saccharomyces cerevisiae (budding yeast) cultures undergoing synchronous meiosis has provided seminal insights into the molecular basis of meiotic recombination and affords a powerful tool for dissecting the molecular roles of recombination factors. This chapter describes a suit of electrophoretic and Southern hybridization techniques used to detect and quantify the DNA intermediates of meiotic recombination at recombination hotspots in budding yeast. DSBs and recombination products (crossovers and noncrossovers) are resolved using one-dimensional electrophoresis and distinguished by restriction site polymorphisms between the parental chromosomes. Psoralen cross-linking is used to stabilize branched JMs, which are resolved from linear species by native/native two-dimensional electrophoresis. Native/denaturing two-dimensional electrophoresis is employed to determine the component DNA strands of JMs and to measure the processing of DSBs. These techniques are generally applicable to any locus where the frequency of recombination is high enough to detect intermediates by Southern hybridization.
Collapse
Affiliation(s)
- Shannon Owens
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, United States; University of California, Davis, Davis, CA, United States; Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Shangming Tang
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, United States; University of California, Davis, Davis, CA, United States; Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, United States; University of California, Davis, Davis, CA, United States.
| |
Collapse
|
5
|
Lao JP, Cloud V, Huang CC, Grubb J, Thacker D, Lee CY, Dresser ME, Hunter N, Bishop DK. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS Genet 2013; 9:e1003978. [PMID: 24367271 PMCID: PMC3868528 DOI: 10.1371/journal.pgen.1003978] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination. Meiosis is the specialized cell division that produces gametes by precisely reducing the chromosome copy number from two to one. Accurate segregation of homologous chromosome pairs requires they be connected by crossing-over, the precise breakage and exchange of chromosome arms that is carried out by a process called recombination. Recombination is regulated so each pair of homologous chromosomes becomes connected by at least one crossover. We studied the roles of two recombination proteins, Rad51 and Dmc1, which can act directly to join homologous DNA molecules. Our evidence supports the idea that Dmc1 is the dominant joining activity, while Rad51 acts indirectly with other proteins to support and regulate Dmc1. Furthermore, Hed1, an inhibitor of Rad51's DNA joining activity, is also shown to enhance the efficiency of crossing-over. Cells in which Rad51 is activated to promote DNA joining in place of Dmc1 have unregulated and inefficient crossing-over that often leaves chromosome pairs without the requisite crossover. Despite these defects, most cells that use Rad51 in place of Dmc1 complete meiosis and produce high levels of crossovers. Our results indicate that compensatory processes ensure that meiotic cells accumulate high levels of crossover intermediates before progressing to the first round of chromosome segregation.
Collapse
Affiliation(s)
- Jessica P. Lao
- Howard Hughes Medical Institute and Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
- Genetics Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Veronica Cloud
- Committee on Genetics, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
| | - Chu-Chun Huang
- Howard Hughes Medical Institute and Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
| | - Drew Thacker
- Weil Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael E. Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute and Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
- Genetics Graduate Group, University of California, Davis, Davis, California, United States of America
- Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, United States of America
- Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, California, United States of America
- * E-mail: (NH); (DKB)
| | - Douglas K. Bishop
- Committee on Genetics, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- * E-mail: (NH); (DKB)
| |
Collapse
|