1
|
Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303215. [PMID: 37906032 PMCID: PMC10724421 DOI: 10.1002/advs.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a highly efficacious treatment modality for refractory and relapsed hematopoietic malignancies in recent years. Furthermore, CAR technologies for cancer immunotherapy have expanded from CAR-T to CAR-natural killer cell (CAR-NK), CAR-cytokine-induced killer cell (CAR-CIK), and CAR-macrophage (CAR-MΦ) therapy. Nevertheless, the high cost and complex manufacturing processes of ex vivo generation of autologous CAR products have hampered broader application. There is an urgent need to develop an efficient and economical paradigm shift for exploring new sourcing strategies and engineering approaches toward generating CAR-engineered immune cells to benefit cancer patients. Currently, researchers are actively investigating various strategies to optimize the preparation and sourcing of these potent immunotherapeutic agents. In this work, the latest research progress is summarized. Perspectives on the future of CAR-engineered immune cell manufacturing are provided, and the engineering approaches, and diverse sources used for their development are focused upon.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Heng Mei
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| |
Collapse
|
2
|
Fujibayashi S, Kiyono T, Endo Y, Tani T, Tate H, Bai L, Sugano E, Tomita H, Fukuda T. Increased lentivirus titer using an ultra-expression vector. Anal Biochem 2023; 669:115119. [PMID: 36958509 DOI: 10.1016/j.ab.2023.115119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Lentivirus is an efficient gene transfer system that is widely used in basic science. We aimed to improve viral titer by applying an ultra-expression vectors to lentiviral packaging. Application of the ultra-expression vectors increased biological titer 4 times for standard preparation. We also evaluated the efficacy of the ultra-expression vectors to relatively longer insert fragments, such as CSII-CMV-CNROE containing 5 genes in multiple cloning sites. Packaging of the ultra-expression vectors showed 3.5 times higher biological titer compared with the original method. Our improved packaging system could be applied to lentivirus to produce higher titers.
Collapse
Affiliation(s)
- So Fujibayashi
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Yuka Endo
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Tetsuya Tani
- Laboratory of Animal Reproduction, Department of Agriculture, Kindai University, Nara, Japan
| | - Haruka Tate
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Lanlan Bai
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Eriko Sugano
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Hiroshi Tomita
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan.
| |
Collapse
|
3
|
Yew CHT, Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Tan JJ, Ng MH. Integrase deficient lentiviral vector: prospects for safe clinical applications. PeerJ 2022; 10:e13704. [PMID: 35979475 PMCID: PMC9377332 DOI: 10.7717/peerj.13704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
HIV-1 derived lentiviral vector is an efficient transporter for delivering desired genetic materials into the targeted cells among many viral vectors. Genetic material transduced by lentiviral vector is integrated into the cell genome to introduce new functions, repair defective cell metabolism, and stimulate certain cell functions. Various measures have been administered in different generations of lentiviral vector systems to reduce the vector's replicating capabilities. Despite numerous demonstrations of an excellent safety profile of integrative lentiviral vectors, the precautionary approach has prompted the development of integrase-deficient versions of these vectors. The generation of integrase-deficient lentiviral vectors by abrogating integrase activity in lentiviral vector systems reduces the rate of transgenes integration into host genomes. With this feature, the integrase-deficient lentiviral vector is advantageous for therapeutic implementation and widens its clinical applications. This short review delineates the biology of HIV-1-erived lentiviral vector, generation of integrase-deficient lentiviral vector, recent studies involving integrase-deficient lentiviral vectors, limitations, and prospects for neoteric clinical use.
Collapse
Affiliation(s)
- Chee-Hong Takahiro Yew
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Narmatha Gurumoorthy
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM), Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Gao Q, DeLaura IF, Anwar IJ, Kesseli SJ, Kahan R, Abraham N, Asokan A, Barbas AS, Hartwig MG. Gene Therapy: Will the Promise of Optimizing Lung Allografts Become Reality? Front Immunol 2022; 13:931524. [PMID: 35844566 PMCID: PMC9283701 DOI: 10.3389/fimmu.2022.931524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023] Open
Abstract
Lung transplantation is the definitive therapy for patients living with end-stage lung disease. Despite significant progress made in the field, graft survival remains the lowest of all solid organ transplants. Additionally, the lung has among the lowest of organ utilization rates-among eligible donors, only 22% of lungs from multi-organ donors were transplanted in 2019. Novel strategies are needed to rehabilitate marginal organs and improve graft survival. Gene therapy is one promising strategy in optimizing donor allografts. Over-expression or inhibition of specific genes can be achieved to target various pathways of graft injury, including ischemic-reperfusion injuries, humoral or cellular rejection, and chronic lung allograft dysfunction. Experiments in animal models have historically utilized adenovirus-based vectors and the majority of literature in lung transplantation has focused on overexpression of IL-10. Although several strategies were shown to prevent rejection and prolong graft survival in preclinical models, none have led to clinical translation. The past decade has seen a renaissance in the field of gene therapy and two AAV-based in vivo gene therapies are now FDA-approved for clinical use. Concurrently, normothermic ex vivo machine perfusion technology has emerged as an alternative to traditional static cold storage. This preservation method keeps organs physiologically active during storage and thus potentially offers a platform for gene therapy. This review will explore the advantages and disadvantages of various gene therapy modalities, review various candidate genes implicated in various stages of allograft injury and summarize the recent efforts in optimizing donor lungs using gene therapy.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Isabel F. DeLaura
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Imran J. Anwar
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Samuel J. Kesseli
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Riley Kahan
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Nader Abraham
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Andrew S. Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Matthew G. Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
5
|
Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother 2020; 128:110276. [PMID: 32502836 DOI: 10.1016/j.biopha.2020.110276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells. Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1 based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches. Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of their utilization in immunotherapy and gene therapy.
Collapse
|
6
|
Ghosh S, Brown AM, Jenkins C, Campbell K. Viral Vector Systems for Gene Therapy: A Comprehensive Literature Review of Progress and Biosafety Challenges. APPLIED BIOSAFETY 2020; 25:7-18. [PMID: 36033383 PMCID: PMC9134621 DOI: 10.1177/1535676019899502] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Introduction National Institutes of Health (NIH) defines gene therapy as an experimental technique that uses genes to treat or prevent disease. Although gene therapy is a promising treatment option for a number of diseases (including inherited disorders, some types of cancer, and certain viral infections), the technique remains risky and is still under study to make sure that it will be effective and safe. Methods Applications of viral vectors and nonviral gene delivery systems have found an encouraging new beginning in gene therapy in recent years. Although several viral vectors and nonviral gene delivery systems have been developed in the past 3 decades, no one delivery system can be applied in gene therapy to all cell types in vitro and in vivo. Furthermore, the use of viral vector systems (both in vitro and in vivo) present unique occupational health and safety challenges. In this review article, we discuss the biosafety challenges and the current framework of risk assessment for working with the viral vector systems. Discussion The recent advances in the field of gene therapy is exciting, but it is important for scientists, institutional biosafety committees, and biosafety officers to safeguard public trust in the use of this technology in clinical trials and make conscious efforts to engage the public through ongoing forums and discussions.
Collapse
Affiliation(s)
- Sumit Ghosh
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Alex M. Brown
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chris Jenkins
- Clinical Biosafety Services, A Division of Sabai Global, Wildwood, MO, USA
| | - Katie Campbell
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
7
|
Ingusci S, Cattaneo S, Verlengia G, Zucchini S, Simonato M. A Matter of Genes: The Hurdles of Gene Therapy for Epilepsy. Epilepsy Curr 2019; 19:38-43. [PMID: 30838918 PMCID: PMC6610370 DOI: 10.1177/1535759718822846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Gene therapy has recently advanced to the level of standard of care for several
diseases. However, its application to neurological disorders is still in the
experimental phase. In this review, we discuss recent advancements in the field
that provide optimism on the possibility to have first-in-human studies for gene
therapy of some forms of epilepsy in the not so distant future.
Collapse
Affiliation(s)
- Selene Ingusci
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Stefano Cattaneo
- 2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Gianluca Verlengia
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Zucchini
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,3 Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
8
|
Generation of Cell Lines Stably Expressing a Fluorescent Reporter of Nonsense-Mediated mRNA Decay Activity. Methods Mol Biol 2017. [PMID: 29236260 DOI: 10.1007/978-1-4939-7540-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a mechanism of mRNA surveillance ubiquitous among eukaryotes. Importantly, NMD not only removes aberrant transcripts with premature stop codons, but also regulates expression of many normal genes. A recently introduced dual-color fluorescent protein-based reporter enables analysis of NMD activity in live cells. In this chapter we describe the method to generate stable transgenic cell lines expressing the splicing-dependent NMD reporter using consecutive steps of lentivirus transduction and Tol2 transposition.
Collapse
|
9
|
Abou-El-Enein M, Bauer G, Reinke P, Renner M, Schneider CK. A roadmap toward clinical translation of genetically-modified stem cells for treatment of HIV. Trends Mol Med 2014; 20:632-42. [PMID: 25262540 DOI: 10.1016/j.molmed.2014.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022]
Abstract
During the past decade, successful gene therapies for immunodeficiencies were finally brought to the clinic. This was accomplished through new gene therapy vectors and improved procedures for genetic modification of autologous hematopoietic stem cells. For HIV, autologous hematopoietic stem cell (HSC) gene therapy with 'anti-HIV genes' promises a functional cure for the disease. However, to develop such a therapy and translate it into a clinical application is rather challenging. The risks and benefits of such a therapy have to be understood, and regulatory hurdles need to be overcome. In this joint paper by academic researchers and regulators, we are, therefore, outlining a high level roadmap for the early stage development of HSC gene therapy as a potential functional cure for HIV.
Collapse
Affiliation(s)
- Mohamed Abou-El-Enein
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Campus Virchow, Berlin, Germany; Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Campus Virchow, Berlin, Germany.
| | - Gerhard Bauer
- University of California Davis, Institute For Regenerative Cures (IRC) Sacramento, CA, USA
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Campus Virchow, Berlin, Germany; Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Matthias Renner
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Christian K Schneider
- Formerly Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, UK; Danish Health and Medicines Authority, Axel Heides Gade 1, 2300 Copenhagen, Denmark; Twincore Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 730625 Hannover, Germany
| |
Collapse
|