1
|
Schütz A, Bernhard F, Berrow N, Buyel JF, Ferreira-da-Silva F, Haustraete J, van den Heuvel J, Hoffmann JE, de Marco A, Peleg Y, Suppmann S, Unger T, Vanhoucke M, Witt S, Remans K. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc 2023; 4:102572. [PMID: 37917580 PMCID: PMC10643540 DOI: 10.1016/j.xpro.2023.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023] Open
Abstract
This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems.
Collapse
Affiliation(s)
- Anja Schütz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform for Protein Production & Characterization, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe-University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Nick Berrow
- Protein Expression Core Facility, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Johannes F Buyel
- Univeristy of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Frederico Ferreira-da-Silva
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Jurgen Haustraete
- VIB, Center for Inflammation Research & Ugent, Department of Biomedical Molecular Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research (HZI), Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jan-Erik Hoffmann
- Protein Chemistry Facility, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabine Suppmann
- Protein Expression and Purification Core Facility, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tamar Unger
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martine Vanhoucke
- BCCM/GeneCorner Plasmid Collection, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Gent, Belgium
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Notkestr. 85, 22607 Hamburg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
2
|
The Expression Pattern of Insulin-Like Growth Factor Subtype 3 (igf3) in the Orange-Spotted Grouper Epinephelus coioides and Its Function on Ovary Maturation. Int J Mol Sci 2023; 24:ijms24032868. [PMID: 36769198 PMCID: PMC9918221 DOI: 10.3390/ijms24032868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
A new insulin-like growth factor (Igf) subtype 3 (igf3) has recently been found in the bony fish orange-spotted grouper (Epinephelus coioides). However, the role of igf3 in the maturation of the ovary and sex differentiation in E. coioides is currently unknown. We examined the ovarian localization and receptor binding of the novel ortholog Igf3 using qRT-PCR, and Western blotting, combined with in situ hybridization and immunohistochemistry methods. Results demonstrated the presence of igf3 mRNA and protein in mature oocytes. Furthermore, Igf3 protein expression was not detected in testis, brain, kidney and liver homogenates. The calculated molecular weight of Igf3 was 22 kDa, which was consistent with the deduced amino acid sequence from the full-length open reading frame. The immunoreactivity showed that Igf3 was strongly present in the follicle staining fully-grown stage. The igf3 mRNA expression level was significantly positively correlated with ovarian follicular maturation. Meanwhile, Igf3 increased germinal-vesicle breakdown in a time- and dose-dependent manner. In vitro, treatment of primary ovarian cells with Igf3 up-regulated significantly the mRNA expression level of genes related to sex determination and reproduction such as forkhead boxl2 (foxl2), dosage-sensitive sex reversal adrenal hypoplasia critical region on chromosome x gene 1 (dax1), cytochrome P450 family 19 subfamily member 1 a (cyp19a1a), cytochrome P450 family 11 subfamily a member 1 a (cyp11a1a) and luteinizing hormone receptor 1 (lhr1). Overall, our results demonstrated that igf3 promotes the maturation of the ovary and plays an important role in sex differentiation in E. coioides.
Collapse
|
3
|
Conversion of the free Cellvibrio japonicus xyloglucan degradation system to the cellulosomal mode. Appl Microbiol Biotechnol 2022; 106:5495-5509. [DOI: 10.1007/s00253-022-12072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
|
4
|
Costa MM, Pio LB, Bule P, Cardoso VA, Duarte M, Alfaia CM, Coelho DF, Brás JA, Fontes CM, Prates JA. Recalcitrant cell wall of Ulva lactuca seaweed is degraded by a single ulvan lyase from family 25 of polysaccharide lyases. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:184-192. [PMID: 35600544 PMCID: PMC9092854 DOI: 10.1016/j.aninu.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
Green macroalgae, e.g., Ulva lactuca, are valuable bioactive sources of nutrients; but algae recalcitrant cell walls, composed of a complex cross-linked matrix of polysaccharides, can compromise their utilization as feedstuffs for monogastric animals. This study aimed to evaluate the ability of pre-selected Carbohydrate-Active enZymes (CAZymes) and sulfatases to degrade U. lactuca cell walls and release nutritive compounds. A databank of 199 recombinant CAZymes and sulfatases was tested in vitro for their action towards U. lactuca cell wall polysaccharides. The enzymes were incubated with the macroalga, either alone or in combination, to release reducing sugars and decrease fluorescence intensity of Calcofluor White stained cell walls. The individual action of a polysaccharide lyase family 25 (PL25), an ulvan lyase, was shown to be the most efficient in cell wall disruption. The ulvan lyase treatment, in triplicate measures, promoted the release of 4.54 g/L (P < 0.001) reducing sugars, a mono- and oligosaccharides release of 11.4 and 11.2 mmol/100 g of dried alga (P < 0.01), respectively, and a decrease of 41.7% (P < 0.001) in cell wall fluorescence, in comparison to control. The ability of ulvan lyase treatment to promote the release of nutritional compounds from alga biomass was also evaluated. A release of some monounsaturated fatty acids was observed, particularly the health beneficial 18:1c9 (P < 0.001). However, no significant release of total fatty acids (P > 0.05), proteins (P = 0.861) or pigments (P > 0.05) was found. These results highlight the capacity of a single recombinant ulvan lyase (PL25 family) to incompletely disrupt U. lactuca cell walls. This enzyme could enhance the bioaccessibility of U. lactuca bioactive products with promising utilization in the feed industry.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Luís B. Pio
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Pedro Bule
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Vânia A. Cardoso
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - Marlene Duarte
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Cristina M. Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Diogo F. Coelho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
| | - Joana A. Brás
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - Carlos M.G.A. Fontes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - José A.M. Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477 Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| |
Collapse
|
5
|
Zhang Y, Wang Y, Li J, Wang C, Du G, Kang Z. Construction of Strong Promoters by Assembling Sigma Factor Binding Motifs. Methods Mol Biol 2022; 2461:137-147. [PMID: 35727448 DOI: 10.1007/978-1-0716-2152-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Development of strong promoters is of growing interest in the field of biotechnology and synthetic biology. Here we present a protocol for the construction of strong prokaryotic promoters that can be recognized by designated multiple sigma factors by interlocking their cognate binding motifs on DNA strands. Strong and stress responsive promoters for Escherichia coli and Bacillus subtilis have been created following the presented protocol. Customized promoters could be easily developed for fine-tuning gene expression or overproducing enzymes with prokaryotic cell factories.
Collapse
Affiliation(s)
- Yonglin Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China
| | - Chao Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Pereira RFS, de Carvalho CCCR. Optimization of Multiparameters for Increased Yields of Cytochrome B5 in Bioreactors. Molecules 2021; 26:4148. [PMID: 34299423 PMCID: PMC8306036 DOI: 10.3390/molecules26144148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
The production of recombinant proteins is gaining increasing importance as the market requests high quality proteins for several applications. However, several process parameters affect both the growth of cells and product yields. This study uses high throughput systems and statistical methods to assess the influence of fermentation conditions in lab-scale bioreactors. Using this methodology, it was possible to find the best conditions to produce cytochrome b5 with recombinant cells of Escherichia coli. Using partial least squares, the height-to-diameter ratio of the bioreactor, aeration rate, and PID controller parameters were found to contribute significantly to the final biomass and cytochrome concentrations. Hence, we could use this information to fine-tune the process parameters, which increased cytochrome production and yield several-fold. Using aeration of 1 vvm, a bioreactor with a height-to-ratio of 2.4 and tuned PID parameters, a production of 72.72 mg/L of cytochrome b5 in the culture media, and a maximum of product to biomass yield of 24.97 mg/g could be achieved.
Collapse
Affiliation(s)
- Ricardo F. S. Pereira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Costa M, Pio L, Bule P, Cardoso V, Alfaia CM, Coelho D, Brás J, Fontes CMGA, Prates JAM. An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall. Sci Rep 2021; 11:9706. [PMID: 33958695 PMCID: PMC8102539 DOI: 10.1038/s41598-021-89278-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
In the present study, 199 pre-selected Carbohydrate-Active enZymes (CAZymes) and sulfatases were assessed, either alone or in combination, to evaluate their capacity to disrupt Laminaria digitata cell wall, with the consequent release of interesting nutritional compounds. A previously characterized individual alginate lyase, belonging to the family 7 of polysaccharide lyases (PL7) and produced by Saccharophagus degradans, was shown to be the most efficient in the in vitro degradation of L. digitata cell wall. The alginate lyase treatment, compared to the control, released up to 7.11 g/L of reducing sugars (p < 0.001) and 8.59 mmol/100 g dried alga of monosaccharides (p < 0.001), and reduced cell wall fluorescence intensity by 39.1% after staining with Calcofluor White (p = 0.001). The hydrolysis of gel-forming polymer alginate by the alginate lyase treatment could prevent the trapping of fatty acids and release beneficial monounsaturated fatty acids, particularly 18:1c9 (p < 0.001), to the extracellular medium. However, no liberation of proteins (p > 0.170) or pigments (p > 0.070) was observed. Overall, these results show the ability of an individual alginate lyase, from PL7 family, to partially degrade L. digitata cell wall under physiological conditions. Therefore, this CAZyme can potentially improve the bioavailability of L. digitata bioactive compounds for monogastric diets, with further application in feed industry.
Collapse
Affiliation(s)
- Mónica Costa
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Luís Pio
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Pedro Bule
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Vânia Cardoso
- NZYTech - Genes and Enzymes, Estrada do Paço Do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Cristina M Alfaia
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Diogo Coelho
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Joana Brás
- NZYTech - Genes and Enzymes, Estrada do Paço Do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Carlos M G A Fontes
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço Do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - José A M Prates
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal.
- NZYTech - Genes and Enzymes, Estrada do Paço Do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal.
| |
Collapse
|
8
|
Zhu J, Zaremska V, D'Onofrio C, Knoll W, Pelosi P. Site-directed mutagenesis of odorant-binding proteins. Methods Enzymol 2020; 642:301-324. [PMID: 32828258 DOI: 10.1016/bs.mie.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modifying the affinity of odorant-binding proteins (OBPs) to small ligands by replacement of specific residues in the binding pocket may lead to several technological applications. Thanks to their compact and stable structures, OBPs are currently regarded as the best candidates to be used in biosensing elements for odorants and volatiles detection. The wide and rich information on the structure of these proteins both in their apo-forms and in complexes with specific ligands provides guidelines to design reliable mutants to monitor specific targets. The same engineered proteins may also find applications in the slow release of pheromones and other chemicals in the environment, as well as in the fine purification of drugs, including the resolution of racemates. Apart from such useful applications, site-directed mutagenesis represents an interesting approach to dissect the specific interactions between small chemicals and amino acid residues in the binding pocket. These studies can lead to design of better ligands, such as pheromone analogues with desired physico-chemical characteristics. In this chapter we examine the different uses of mutagenesis applied to OBPs and report a couple of protocols that have been successful in our hands.
Collapse
Affiliation(s)
- Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Valeriia Zaremska
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chiara D'Onofrio
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; CEST Competence Center for Electrochemical Surface Technology, Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.
| |
Collapse
|
9
|
Gerstmans H, Grimon D, Gutiérrez D, Lood C, Rodríguez A, van Noort V, Lammertyn J, Lavigne R, Briers Y. A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins. SCIENCE ADVANCES 2020; 6:eaaz1136. [PMID: 32537492 PMCID: PMC7269649 DOI: 10.1126/sciadv.aaz1136] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Health care authorities are calling for new antibacterial therapies to cope with the global emergence of antibiotic-resistant bacteria. Bacteriophage-encoded lysins are a unique class of antibacterials with promising (pre)clinical progress. Custom engineering of lysins allows for the creation of variants against potentially any bacterial pathogen. We here present a high-throughput hit-to-lead development platform for engineered lysins. The platform is driven by VersaTile, a new DNA assembly method for the rapid construction of combinatorial libraries of engineered lysins. We constructed approximately 10,000 lysin variants. Using an iterative screening procedure, we identified a lead variant with high antibacterial activity against Acinetobacter baumannii in human serum and an ex vivo pig burn wound model. This generic platform could offer new opportunities to populate the preclinical pipeline with engineered lysins for diverse (therapeutic) applications.
Collapse
Affiliation(s)
- H. Gerstmans
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - D. Grimon
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - D. Gutiérrez
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - C. Lood
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - A. Rodríguez
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - V. van Noort
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 Leiden, Netherlands
| | - J. Lammertyn
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - R. Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Y. Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| |
Collapse
|
10
|
Coelho D, Lopes PA, Cardoso V, Ponte P, Brás J, Madeira MS, Alfaia CM, Bandarra NM, Fontes CMGA, Prates JAM. A two-enzyme constituted mixture to improve the degradation of Arthrospira platensis microalga cell wall for monogastric diets. J Anim Physiol Anim Nutr (Berl) 2019; 104:310-321. [PMID: 31680348 PMCID: PMC7004008 DOI: 10.1111/jpn.13239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
The main goal of this study was to test a rational combination of pre‐selected carbohydrate‐active enzymes (CAZymes) and sulphatases, individually or in combination, in order to evaluate its capacity to disrupt Arthrospira platensis cell wall, allowing the release of its valuable nutritional bioactive compounds. By the end, a two‐enzyme constituted mixture (Mix), composed by a lysozyme and a α‐amylase, was incubated with A. platensis suspension. The microalga cell wall disruption was evaluated through the amount of reducing sugars released from the cell wall complemented with the oligosaccharide profile by HPLC. An increase of the amount of reducing sugars up to 2.42 g/L in microalgae treated with the Mix relative to no treatment (p < .05), as well as a 7‐fold increase of oligosaccharides amount (p < .001), were obtained. With resort of fluorescence microscopy, a 36% reduction of fluorescence intensity (p < .001) was observed using Calcofluor White staining. In the supernatant, the Mix caused a 1.34‐fold increase in protein content (p = .018) relative to the control. Similarly, n‐6 polyunsaturated fatty acids (PUFA) (p = .007), in particular 18:2n‐6 (p = .016), monounsaturated fatty acids (MUFA) (p = .049) and chlorophyll a (p = .025) contents were higher in the supernatant of microalgae treated with the enzyme mixture in relation to the control. Taken together, these results point towards the disclosure of a novel two‐enzyme mixture able to partial degrade A. platensis cell wall, improving its nutrients bioavailability for monogastric diets with the cost‐effective advantage use of microalgae in animal feed industry.
Collapse
Affiliation(s)
- Diogo Coelho
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A Lopes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Cardoso
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Lisboa, Portugal
| | - Patrícia Ponte
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Lisboa, Portugal
| | - Joana Brás
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Lisboa, Portugal
| | - Marta S Madeira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Cristina M Alfaia
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Narcisa M Bandarra
- DivAV, Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, Lisboa, Portugal
| | - Carlos M G A Fontes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal.,NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Lisboa, Portugal
| | - José A M Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal.,NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Lisboa, Portugal
| |
Collapse
|
11
|
Semiautomated Small-Scale Purification Method for High-Throughput Expression Analysis of Recombinant Proteins. Methods Mol Biol 2019. [PMID: 31267448 DOI: 10.1007/978-1-4939-9624-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The expression analysis of recombinant proteins is a challenging step in any high-throughput protein production pipeline. Often multiple expression systems and a variety of expression construct designs are considered for the production of a protein of interest. There is a strong need to triage constructs rapidly and systematically. This chapter describes a semiautomated method for the simultaneous purification and characterization of proteins expressed from multiple samples of expression cultures from the E. coli, baculovirus expression vector system, and mammalian transient expression systems. This method assists in the selection of the most promising expression construct(s) or the most favorable expression condition(s) to move forward into large-scale protein production.
Collapse
|
12
|
Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. Methods Mol Biol 2019. [PMID: 31267459 DOI: 10.1007/978-1-4939-9624-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography-where production of a protein crystal might take weeks and even months-a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability. Increased protein expression and protein stability can be achieved by randomly altering the coding sequence. As the number of mutants generated might be overwhelming, a powerful protein expression and stability screen is required. In this chapter, we describe a colony filtration technology, which allows us to screen random mutagenesis libraries for increased thermal stability-the Hot CoFi blot. We share how to create the random mutagenesis library, how to perform the Hot CoFi blot, and how to identify more thermally stable clones. We use the Tobacco Etch Virus protease as a target to exemplify the procedure.
Collapse
|
13
|
Coelho D, Lopes PA, Cardoso V, Ponte P, Brás J, Madeira MS, Alfaia CM, Bandarra NM, Gerken HG, Fontes CMGA, Prates JAM. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Sci Rep 2019; 9:5382. [PMID: 30926940 PMCID: PMC6440988 DOI: 10.1038/s41598-019-41775-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/17/2019] [Indexed: 01/23/2023] Open
Abstract
In this study, a rational combination of 200 pre-selected Carbohydrate-Active enzymes (CAZymes) and sulfatases were tested, individually or combined, according to their ability to degrade Chlorella vulgaris cell wall to access its valuable nutritional compounds. The disruption of microalgae cell walls by a four-enzyme mixture (Mix) in comparison with the control, enabled to release up to 1.21 g/L of reducing sugars (p < 0.001), led to an eight-fold increase in oligosaccharides release (p < 0.001), and reduced the fluorescence intensity by 47% after staining with Calcofluor White (p < 0.001). The Mix treatment was successful in releasing proteins (p < 0.001), some MUFA (p < 0.05), and the beneficial 18:3n-3 fatty acid (p < 0.05). Even if no variation was detected for chlorophylls (p > 0.05), total carotenoids were increased in the supernatant (p < 0.05) from the Mix treatment, relative to the control. Taken together, these results indicate that this four-enzyme Mix displays an effective capacity to degrade C. vulgaris cell wall. Thus, these enzymes may constitute a good approach to improve the bioavailability of C. vulgaris nutrients for monogastric diets, in particular, and to facilitate the cost-effective use of microalgae by the feed industry, in general.
Collapse
Affiliation(s)
- Diogo Coelho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Paula A Lopes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Vânia Cardoso
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Patrícia Ponte
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Joana Brás
- NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Marta S Madeira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Cristina M Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Narcisa M Bandarra
- DivAV, Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 1495-006, Lisboa, Portugal
| | - Henri G Gerken
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Building ISTB-3, Room 103, Mesa, Arizona, United States of America
| | - Carlos M G A Fontes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal.,NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - José A M Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal. .,NZYTech - Genes and Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal.
| |
Collapse
|
14
|
Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc Natl Acad Sci U S A 2019; 116:6063-6068. [PMID: 30850540 PMCID: PMC6442616 DOI: 10.1073/pnas.1815791116] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Over the last two decades, the number of gene/protein sequences gleaned from sequencing projects of individual genomes and environmental DNA has grown exponentially. Only a tiny fraction of these predicted proteins has been experimentally characterized, and the function of most proteins remains hypothetical or only predicted based on sequence similarity. Despite the development of postgenomic methods, such as transcriptomics, proteomics, and metabolomics, the assignment of function to protein sequences remains one of the main challenges in modern biology. As in all classes of proteins, the growing number of predicted carbohydrate-active enzymes (CAZymes) has not been accompanied by a systematic and accurate attribution of function. Taking advantage of the CAZy database, which groups CAZymes into families and subfamilies based on amino acid similarities, we recombinantly produced 564 proteins selected from subfamilies without any biochemically characterized representatives, from distant relatives of characterized enzymes and from nonclassified proteins that show little similarity with known CAZymes. Screening these proteins for activity on a wide collection of carbohydrate substrates led to the discovery of 13 CAZyme families (two of which were also discovered by others during the course of our work), revealed three previously unknown substrate specificities, and assigned a function to 25 subfamilies.
Collapse
|
15
|
Johnson JM, Hays FA. High-Throughput Protein Production of Membrane Proteins in Saccharomyces cerevisiae. Methods Mol Biol 2019; 2025:227-259. [PMID: 31267456 DOI: 10.1007/978-1-4939-9624-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This chapter outlines a protocol to assess viability for large-scale protein production and purification for selected targets from an initial medium-throughput cloning strategy. Thus, one can assess a broad number of potential candidate proteins, mutants, or expression variants using an empirically minimalistic approach. In addition, a key output from this protocol is utilization of Saccharomyces cerevisiae as a means for the efficient screening and production of purified proteins. The primary focus in this protocol is overexpression of polytopic integral membrane proteins though methods can be equally applied to soluble proteins. The protocol starts with outlining high-throughput (sans robotics) cloning of expression proteins into a dual-tag yeast expression plasmid. These membrane proteins are then screened for expression level, detergent solubilization, initial purity, and chromatography characteristics. Both small- and large-scale expression methods are discussed along with fermentation.
Collapse
Affiliation(s)
- Jennifer M Johnson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
16
|
Hajihassan Z, Tilko PG, Sadat SM. Improved Production of Recombinant Human β-NGF in Escherichia coli - a Bioreactor Scale Study. Pol J Microbiol 2018; 67:355-363. [PMID: 30451453 PMCID: PMC7256796 DOI: 10.21307/pjm-2018-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2018] [Indexed: 11/11/2022] Open
Abstract
Human nerve growth factor β (β-NGF) is considered a major therapeutic agent for treatment of neurodegenerative diseases. We have previously reported the optimized conditions for β-NGF overproduction in Escherichia coli in a shake-flask culture. In this study the optimal %DO (dissolved oxygen) and post induction temperature values for improved production of β-NGF were found in the bioreactor scale using response surface methodology (RSM) as the most common statistical method. Also, for further enhancement of the yield, different post-induction periods of time were selected for testing. In all experiments, the productivity level and bacterial cell growth were evaluated by western blotting technique and monitoring of absorbance at 600 nm, respectively. Our results indicated that %DO, the post-induction time and temperature have significant effects on the production of β-NGF. After 2 hours of induction, the low post induction temperature of 32°C and 20% DO were used to increase the production of β-NGF in a 5-l bioreactor. Another important result obtained in this study was that the improved β-NGF production was not achieved at highest dry cell weigh or highest cell growth. These results are definitely of importance for industrial β-NGF production.
Collapse
Affiliation(s)
- Zahra Hajihassan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Pouria Gholami Tilko
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyedeh Mahdieh Sadat
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Hayes S, Vincentelli R, Mahony J, Nauta A, Ramond L, Lugli GA, Ventura M, van Sinderen D, Cambillau C. Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various Gram-positive bacteria. Mol Microbiol 2018; 110:777-795. [DOI: 10.1111/mmi.14124] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Stephen Hayes
- School of Microbiology; University College Cork; Cork Ireland
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université; Campus de Luminy Marseille France
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS); Campus de Luminy Marseille France
| | - Jennifer Mahony
- School of Microbiology; University College Cork; Cork Ireland
| | - Arjen Nauta
- FrieslandCampina; Amersfoort The Netherlands
| | - Laurie Ramond
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université; Campus de Luminy Marseille France
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS); Campus de Luminy Marseille France
| | - Gabriele A. Lugli
- Laboratory of Probiogenomics, Department of Life Sciences; University of Parma; Parma Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences; University of Parma; Parma Italy
| | - Douwe van Sinderen
- School of Microbiology; University College Cork; Cork Ireland
- APC Microbiome Ireland, University College Cork; Cork Ireland
| | - Christian Cambillau
- School of Microbiology; University College Cork; Cork Ireland
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université; Campus de Luminy Marseille France
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS); Campus de Luminy Marseille France
| |
Collapse
|
18
|
Inhibiting the Catalytic Activity of Family GH11 Xylanases by Recombinant Rice Xylanase-Inhibiting Protein. Catal Letters 2018. [DOI: 10.1007/s10562-018-2431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
High-Throughput Production of Proteins in E. coli for Structural Studies. Methods Mol Biol 2017. [PMID: 28470618 DOI: 10.1007/978-1-4939-6887-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We have developed a standardized and efficient workflow for high-throughput (HT) protein expression in E. coli and parallel purification which can be tailored to the downstream application of the target proteins. It includes a one-step purification for the purposes of functional assays and a two-step protocol for crystallographic studies, with the option of on-column tag removal.
Collapse
|
20
|
Konczal J, Gray CH. Streamlining workflow and automation to accelerate laboratory scale protein production. Protein Expr Purif 2017; 133:160-169. [PMID: 28330825 DOI: 10.1016/j.pep.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
Protein production facilities are often required to produce diverse arrays of proteins for demanding methodologies including crystallography, NMR, ITC and other reagent intensive techniques. It is common for these teams to find themselves a bottleneck in the pipeline of ambitious projects. This pressure to deliver has resulted in the evolution of many novel methods to increase capacity and throughput at all stages in the pipeline for generation of recombinant proteins. This review aims to describe current and emerging options to accelerate the success of protein production in Escherichia coli. We emphasize technologies that have been evaluated and implemented in our laboratory, including innovative molecular biology and expression vectors, small-scale expression screening strategies and the automation of parallel and multidimensional chromatography.
Collapse
Affiliation(s)
- Jennifer Konczal
- Drug Discovery Program, CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - Christopher H Gray
- Drug Discovery Program, CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom.
| |
Collapse
|
21
|
Pires VMR, Pereira PMM, Brás JLA, Correia M, Cardoso V, Bule P, Alves VD, Najmudin S, Venditto I, Ferreira LMA, Romão MJ, Carvalho AL, Fontes CMGA, Prazeres DM. Stability and Ligand Promiscuity of Type A Carbohydrate-binding Modules Are Illustrated by the Structure of Spirochaeta thermophila StCBM64C. J Biol Chem 2017; 292:4847-4860. [PMID: 28179427 DOI: 10.1074/jbc.m116.767541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.
Collapse
Affiliation(s)
- Virgínia M R Pires
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal
| | - Pedro M M Pereira
- the Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Joana L A Brás
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal.,NZYTech Genes Enzymes, 1649-038 Lisboa, Portugal, and
| | - Márcia Correia
- the UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Vânia Cardoso
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal.,NZYTech Genes Enzymes, 1649-038 Lisboa, Portugal, and
| | - Pedro Bule
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal
| | - Victor D Alves
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal
| | - Shabir Najmudin
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal
| | - Immacolata Venditto
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal
| | - Luís M A Ferreira
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal.,NZYTech Genes Enzymes, 1649-038 Lisboa, Portugal, and
| | - Maria João Romão
- the UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luísa Carvalho
- the UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos M G A Fontes
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário da Ajuda, 1300-477 Lisboa, Portugal, .,NZYTech Genes Enzymes, 1649-038 Lisboa, Portugal, and
| | - Duarte Miguel Prazeres
- the Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal,
| |
Collapse
|
22
|
Sequeira AF, Turchetto J, Saez NJ, Peysson F, Ramond L, Duhoo Y, Blémont M, Fernandes VO, Gama LT, Ferreira LMA, Guerreiro CIPI, Gilles N, Darbon H, Fontes CMGA, Vincentelli R. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli. Microb Cell Fact 2017; 16:4. [PMID: 28093085 PMCID: PMC5240416 DOI: 10.1186/s12934-016-0618-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
Background Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. Results The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. Conclusions This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0618-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Filipa Sequeira
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038, Lisbon, Portugal
| | - Jeremy Turchetto
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Natalie J Saez
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
| | - Fanny Peysson
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Laurie Ramond
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Yoan Duhoo
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Marilyne Blémont
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Vânia O Fernandes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Luís T Gama
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Luís M A Ferreira
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038, Lisbon, Portugal
| | - Catarina I P I Guerreiro
- NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038, Lisbon, Portugal
| | - Nicolas Gilles
- CEA/DRF/iBiTecS, Service d'Ingénierie Moléculaire des Protéines, 91191, Gif-Sur-Yvette, France
| | - Hervé Darbon
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Carlos M G A Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038, Lisbon, Portugal
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France.
| |
Collapse
|
23
|
Turchetto J, Sequeira AF, Ramond L, Peysson F, Brás JLA, Saez NJ, Duhoo Y, Blémont M, Guerreiro CIPD, Quinton L, De Pauw E, Gilles N, Darbon H, Fontes CMGA, Vincentelli R. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery. Microb Cell Fact 2017; 16:6. [PMID: 28095880 PMCID: PMC5242012 DOI: 10.1186/s12934-016-0617-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. RESULTS In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. CONCLUSIONS Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large libraries of recombinant disulphide-reticulated peptides of remarkable interest for drug discovery programs.
Collapse
Affiliation(s)
- Jeremy Turchetto
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Ana Filipa Sequeira
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
| | - Laurie Ramond
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Fanny Peysson
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Joana L. A. Brás
- NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
| | - Natalie J. Saez
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072 Australia
| | - Yoan Duhoo
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Marilyne Blémont
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | | | - Loic Quinton
- Mass Spectrometry Laboratory, B6c University of Liège, MolSys-Quartier Agora, Allée du six Aout 11, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, B6c University of Liège, MolSys-Quartier Agora, Allée du six Aout 11, 4000 Liège, Belgium
| | - Nicolas Gilles
- CEA/DRF/iBiTecS, Service d’Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Hervé Darbon
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Carlos M. G. A. Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| |
Collapse
|
24
|
Coolbaugh M, Shakalli Tang M, Wood D. High-throughput purification of recombinant proteins using self-cleaving intein tags. Anal Biochem 2017; 516:65-74. [DOI: 10.1016/j.ab.2016.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
|
25
|
Ma F, Xie Y, Luo M, Wang S, Hu Y, Liu Y, Feng Y, Yang GY. Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum. Synth Syst Biotechnol 2016; 1:195-206. [PMID: 29062943 PMCID: PMC5640797 DOI: 10.1016/j.synbio.2016.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 10/29/2022] Open
Abstract
Cell-free synthetic biology system organizes multiple enzymes (parts) from different sources to implement unnatural catalytic functions. Highly adaption between the catalytic parts is crucial for building up efficient artificial biosynthetic systems. Protein engineering is a powerful technology to tailor various enzymatic properties including catalytic efficiency, substrate specificity, temperature adaptation and even achieve new catalytic functions. However, altering enzymatic pH optimum still remains a challenging task. In this study, we proposed a novel sequence homolog-based protein engineering strategy for shifting the enzymatic pH optimum based on statistical analyses of sequence-function relationship data of enzyme family. By two statistical procedures, artificial neural networks (ANNs) and least absolute shrinkage and selection operator (Lasso), five amino acids in GH11 xylanase family were identified to be related to the evolution of enzymatic pH optimum. Site-directed mutagenesis of a thermophilic xylanase from Caldicellulosiruptor bescii revealed that four out of five mutations could alter the enzymatic pH optima toward acidic condition without compromising the catalytic activity and thermostability. Combination of the positive mutants resulted in the best mutant M31 that decreased its pH optimum for 1.5 units and showed increased catalytic activity at pH < 5.0 compared to the wild-type enzyme. Structure analysis revealed that all the mutations are distant from the active center, which may be difficult to be identified by conventional rational design strategy. Interestingly, the four mutation sites are clustered at a certain region of the enzyme, suggesting a potential "hot zone" for regulating the pH optima of xylanases. This study provides an efficient method of modulating enzymatic pH optima based on statistical sequence analyses, which can facilitate the design and optimization of suitable catalytic parts for the construction of complicated cell-free synthetic biology systems.
Collapse
Affiliation(s)
- Fuqiang Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Manjie Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - You Hu
- School of Statistics, East China Normal University, Shanghai 200241, China
| | - Yukun Liu
- School of Statistics, East China Normal University, Shanghai 200241, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
26
|
Nod2-Nodosome in a Cell-Free System: Implications in Pathogenesis and Drug Discovery for Blau Syndrome and Early-Onset Sarcoidosis. ScientificWorldJournal 2016; 2016:2597376. [PMID: 27403452 PMCID: PMC4926014 DOI: 10.1155/2016/2597376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein (Nod) 2 is an intracellular pattern recognition receptor, which recognizes muramyl dipeptide (N-Acetylmuramyl-L-Alanyl-D-Isoglutamine: MDP), a bacterial peptidoglycan component, and makes a NF-κB-activating complex called nodosome with adaptor protein RICK (RIP2/RIPK2). Nod2 mutants are associated with the autoinflammatory diseases, Blau syndrome (BS)/early-onset sarcoidosis (EOS). For drug discovery of BS/EOS, we tried to develop Nod2-nodosome in a cell-free system. FLAG-tagged RICK, biotinylated-Nod2, and BS/EOS-associated Nod2 mutants were synthesized, and proximity signals between FLAG-tagged and biotinylated proteins were detected by amplified luminescent proximity homogeneous assay (ALPHA). Upon incubation with MDP, the ALPHA signal of interaction between Nod2-WT and RICK was increased in a dose-dependent manner. The ALPHA signal of interaction between RICK and the BS/EOS-associated Nod2 mutants was more significantly increased than Nod2-WT. Notably, the ALPHA signal between Nod2-WT and RICK was increased upon incubation with MDP, but not when incubated with the same concentrations, L-alanine, D-isoglutamic acid, or the MDP-D-isoform. Thus, we successfully developed Nod2-nodosome in a cell-free system reflecting its function in vivo, and it can be useful for screening Nod2-nodosome-targeted therapeutic molecules for BS/EOS and granulomatous inflammatory diseases.
Collapse
|
27
|
Tools to cope with difficult-to-express proteins. Appl Microbiol Biotechnol 2016; 100:4347-55. [DOI: 10.1007/s00253-016-7514-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
|
28
|
Vincentelli R, Romier C. Complex Reconstitution and Characterization by Combining Co-expression Techniques in Escherichia coli with High-Throughput. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:43-58. [PMID: 27165318 DOI: 10.1007/978-3-319-27216-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Single protein expression technologies have strongly benefited from the Structural Genomics initiatives that have introduced parallelization at the laboratory level. Specifically, the developments made in the wake of these initiatives have revitalized the use of Escherichia coli as major host for heterologous protein expression. In parallel to these improvements for single expression, technologies for complex reconstitution by co-expression in E. coli have been developed. Assessments of these co-expression technologies have highlighted the need for combinatorial experiments requiring automated protocols. These requirements can be fulfilled by adapting the high-throughput approaches that have been developed for single expression to the co-expression technologies. Yet, challenges are laying ahead that further need to be addressed and that are only starting to be taken into account in the case of single expression. These notably include the biophysical characterization of the samples at the small-scale level. Specifically, these approaches aim at discriminating the samples at an early stage of their production based on various biophysical criteria leading to cost-effectiveness and time-saving. This chapter addresses these various issues to provide the reader with a broad and comprehensive overview of complex reconstitution and characterization by co-expression in E. coli.
Collapse
Affiliation(s)
- Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (A.F.M.B), UMR7257 CNRS, Université Aix-Marseille, Case 932, 163 Avenue de Luminy, 13288, Marseille cedex 9, France.
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Centre de Biologie Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404, Illkirch Cedex, France.
| |
Collapse
|
29
|
Reconstituted AIM2 inflammasome in cell-free system. J Immunol Methods 2015; 426:76-81. [PMID: 26259507 DOI: 10.1016/j.jim.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022]
Abstract
Absent in melanoma 2 (AIM2) is an intracellular pattern-recognition receptor, which is a member of the PYHIN protein family, consisting of a PYD domain and an IFN-inducible nuclear localization (HIN) domain. AIM2 is reported to oligomerize with adaptor protein ASC upon sensing bacterial and viral cytosolic DNA in order to form the AIM2 inflammasome, which activates caspase-1 leading to IL-1β secretion. Dysregulation of AIM2 inflammasome is supposed to result in autoinflammatory and autoimmune diseases. Thus, the development of new targeted drugs against AIM2 inflammasome would be important for the treatment of these diseases. However, since AIM2 inflammasome is an intracellular receptor, enforced internalization of both ligands and candidate molecules is necessary for the screening of AIM2-inflammasome-targeted molecules. We developed a reconstituted AIM2 inflammasome in a cell-free system with amplified luminescent proximity homogeneous assay (Alpha). Strong Alpha signal was detected upon incubation with poly-deoxyadenylic-deoxythymidylic acid, poly(dA:dT), whereas no Alpha signal was detected upon incubation with muramyl dipeptide, one of the NLR ligands of Nod2 ligand. The interaction between AIM2 and ASC was disrupted by an anti-human ASC monoclonal antibody, CRID3, a class of diarylsulfonylurea-containing compounds, and glycyrrhizin, a substance found in liquorice root. Thus, the reconstituted AIM2 inflammasome in a cell-free system is useful for screening AIM2-inflammasome-targeted therapeutic molecules.
Collapse
|
30
|
Quantifying domain-ligand affinities and specificities by high-throughput holdup assay. Nat Methods 2015; 12:787-93. [PMID: 26053890 PMCID: PMC4521981 DOI: 10.1038/nmeth.3438] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/19/2015] [Indexed: 12/21/2022]
Abstract
Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes.
Collapse
|
31
|
Itkonen JM, Urtti A, Bird LE, Sarkhel S. Codon optimization and factorial screening for enhanced soluble expression of human ciliary neurotrophic factor in Escherichia coli. BMC Biotechnol 2014; 14:92. [PMID: 25394427 PMCID: PMC4237735 DOI: 10.1186/s12896-014-0092-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotrophic factors influence survival, differentiation, proliferation and death of neuronal cells within the central nervous system. Human ciliary neurotrophic factor (hCNTF) has neuroprotective properties and is also known to influence energy balance. Consequently, hCNTF has potential therapeutic applications in neurodegenerative, obesity and diabetes related disorders. Clinical and biological applications of hCNTF necessitate a recombinant expression system to produce large amounts of functional protein in soluble form. Earlier attempts to express hCNTF in Escherichia coli (E. coli) were limited by low amounts and the need to refold from inclusion bodies. RESULTS In this report, we describe a strategy to effectively identify constructs and conditions for soluble expression of hCNTF in E. coli. Small-scale expression screening with soluble fusion tags identified many conditions that yielded soluble expression. Codon optimized 6-His-hCNTF construct showed soluble expression in all the conditions tested. Large-scale culture of the 6-His-hCNTF construct yielded high (10 - 20 fold) soluble expression (8 - 9 fold) as compared to earlier published reports. Functional activity of recombinant 6-His-hCNTF produced was confirmed by its binding to hCNTF receptor (hCNTFRα) with an EC50 = 36 nM. CONCLUSION Our results highlight the combination of codon optimization and screening soluble fusion tags as a successful strategy for high yielding soluble expression of hCNTF in E. coli. Codon optimization of the hCNTF sequence seems to be sufficient for soluble expression of hCNTF. The combined approach of codon optimization and soluble fusion tag screen can be an effective strategy for soluble expression of pharmaceutical proteins in E. coli.
Collapse
|
32
|
Saez NJ, Nozach H, Blemont M, Vincentelli R. High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli. J Vis Exp 2014:e51464. [PMID: 25146501 PMCID: PMC4692350 DOI: 10.3791/51464] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Collapse
Affiliation(s)
- Natalie J Saez
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Université
| | - Hervé Nozach
- iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France
| | - Marilyne Blemont
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Université
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Université;
| |
Collapse
|
33
|
Correa A, Ortega C, Obal G, Alzari P, Vincentelli R, Oppezzo P. Generation of a vector suite for protein solubility screening. Front Microbiol 2014; 5:67. [PMID: 24616717 PMCID: PMC3934309 DOI: 10.3389/fmicb.2014.00067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/05/2014] [Indexed: 12/15/2022] Open
Abstract
Recombinant protein expression has become an invaluable tool for academic and biotechnological projects. With the use of high-throughput screening technologies for soluble protein production, uncountable target proteins have been produced in a soluble and homogeneous state enabling the realization of further studies. Evaluation of hundreds conditions requires the use of high-throughput cloning and screening methods. Here we describe a new versatile vector suite dedicated to the expression improvement of recombinant proteins (RP) with solubility problems. This vector suite allows the parallel cloning of the same PCR product into the 12 different expression vectors evaluating protein expression under different promoter strength, different fusion tags as well as different solubility enhancer proteins. Additionally, we propose the use of a new fusion protein which appears to be a useful solubility enhancer. Above all we propose in this work an economic and useful vector suite to fast track the solubility of different RP. We also propose a new solubility enhancer protein that can be included in the evaluation of the expression of RP that are insoluble in classical expression conditions.
Collapse
Affiliation(s)
- Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo Montevideo, Uruguay
| | - Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo Montevideo, Uruguay
| | - Gonzalo Obal
- Protein Biophysics Unit, Institut Pasteur de Montevideo Montevideo, Uruguay
| | - Pedro Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, Paris France
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique, Aix-Marseille Université CNRS UMR7257, AFMB, Marseille, France
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo Montevideo, Uruguay
| |
Collapse
|
34
|
Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OHP, Douzi B, Saez NJ, Moutiez M, Servent D, Gondry M, Thaï R, Cuniasse P, Vincentelli R, Dive V. High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact 2013; 12:37. [PMID: 23607455 PMCID: PMC3668227 DOI: 10.1186/1475-2859-12-37] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/13/2022] Open
Abstract
Background Disulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E. coli is considered difficult and general methods and protocols, particularly on a high throughput scale, are limited. Results Here we report a high throughput screening approach that allowed the systematic investigation of the solubilizing and folding influence of twelve cytoplasmic partners on 28 DRPs in the strains BL21 (DE3) pLysS, Origami B (DE3) pLysS and SHuffle® T7 Express lysY (1008 conditions). The screening identified the conditions leading to the successful soluble expression of the 28 DRPs selected for the study. Amongst 336 conditions tested per bacterial strain, soluble expression was detected in 196 conditions using the strain BL21 (DE3) pLysS, whereas only 44 and 50 conditions for soluble expression were identified for the strains Origami B (DE3) pLysS and SHuffle® T7 Express lysY respectively. To assess the redox states of the DRPs, the solubility screen was coupled with mass spectrometry (MS) to determine the exact masses of the produced DRPs or fusion proteins. To validate the results obtained at analytical scale, several examples of proteins expressed and purified to a larger scale are presented along with their MS and functional characterization. Conclusions Our results show that the production of soluble and functional DRPs with cytoplasmic partners is possible in E. coli. In spite of its reducing cytoplasm, BL21 (DE3) pLysS is more efficient than the Origami B (DE3) pLysS and SHuffle® T7 Express lysY trxB-/gor- strains for the production of DRPs in fusion with solubilizing partners. However, our data suggest that oxidation of the proteins occurs ex vivo. Our protocols allow the production of a large diversity of DRPs using DsbC as a fusion partner, leading to pure active DRPs at milligram scale in many cases. These results open up new possibilities for the study and development of DRPs with therapeutic or biotechnological interest whose production was previously a limitation.
Collapse
Affiliation(s)
- Hervé Nozach
- CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, CEA Saclay, Gif sur Yvette F-91191, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|