1
|
Finotti A, Gasparello J, Casnati A, Corradini R, Gambari R, Sansone F. Delivery of Peptide Nucleic Acids Using an Argininocalix[4]arene as Vector. Methods Mol Biol 2021; 2211:123-143. [PMID: 33336275 DOI: 10.1007/978-1-0716-0943-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The importance of peptide nucleic acids (PNAs) for alteration of gene expression is nowadays firmly established. PNAs are characterized by a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units and have been found to be excellent candidates for antisense and antigene therapies. Recently, PNAs have been demonstrated to alter the action of microRNAs and thus can be considered very important tools for miRNA therapeutics. In fact, the pharmacological modulation of microRNA activity appears to be a very interesting approach in the development of new types of drugs. Among the limits of PNAs in applied molecular biology, the delivery to target cells and tissues is of key importance. The aim of this chapter is to describe methods for the efficient delivery of unmodified PNAs designed to target microRNAs involved in cancer, using as model system miR-221-3p and human glioma cells as in vitro experimental cellular system. The methods employed to deliver PNAs targeting miR-221-3p here presented are based on a macrocyclic multivalent tetraargininocalix[4]arene used as non-covalent vector for anti-miR-221-3p PNAs. High delivery efficiency, low cytotoxicity, maintenance of the PNA biological activity, and easy preparation makes this vector a candidate for a universal delivery system for this class of nucleic acid analogs.
Collapse
Affiliation(s)
- Alessia Finotti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.
| | - Jessica Gasparello
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy
| | - Roberto Gambari
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.,Interuniversity Consortium for Biotechnology, Trieste University, Trieste, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy.
| |
Collapse
|
2
|
Abstract
The involvement of microRNAs in human pathologies is firmly established. Accordingly, the pharmacological modulation of microRNA activity appears to be a very interesting approach in the development of new types of drugs (miRNA therapeutics). One important research area is the possible development of miRNA therapeutics in the field of rare diseases. In this respect, appealing molecules are based on peptide nucleic acids (PNAs), displaying, in their first description, a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units, and found to be excellent candidates for antisense and antigene therapies. The aim of the present article is to describe methods for determining the activity of PNAs designed to target microRNAs involved in cystic fibrosis, using as model system miR-145-5p and its target cystic fibrosis transmembrane conductance regulator (CFTR) mRNA. The methods employed to study the effects of PNAs targeting miR-145-5p are presented here by discussing data obtained using as cellular model system the human lung epithelial Calu-3 cell line.
Collapse
|
3
|
Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Sci Rep 2019; 9:3036. [PMID: 30816154 PMCID: PMC6395679 DOI: 10.1038/s41598-019-39211-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/03/2019] [Indexed: 01/25/2023] Open
Abstract
The application of Peptide Nucleic Acids (PNAs), mimics of DNA lacking the sugar-phosphate backbone, for antisense/anti-gene therapy and gene editing is limited by their low uptake by cells. Currently, no simple and efficient delivery systems and methods are available to solve this open issue. One of the most promising approach is the modification of the PNA structure through the covalent linkage of poliarginine tails, but this means that every PNA intended to be internalized must be modified. Herein we report the results relative to the delivery ability of a macrocyclic multivalent tetraargininocalix[4]arene (1) used as non-covalent vector for anti-miR-221-3p PNAs. High delivery efficiency, low cytotoxicity, maintenance of the PNA biological activity and ease preparation of the transfection formulation, simply attained by mixing PNA and calixarene, candidate this vector as universal delivery system for this class of nucleic acid analogues.
Collapse
|
4
|
Avitabile C, Accardo A, Ringhieri P, Morelli G, Saviano M, Montagner G, Fabbri E, Gallerani E, Gambari R, Romanelli A. Incorporation of Naked Peptide Nucleic Acids into Liposomes Leads to Fast and Efficient Delivery. Bioconjug Chem 2015; 26:1533-41. [PMID: 26176882 DOI: 10.1021/acs.bioconjchem.5b00156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The delivery of peptide nucleic acids (PNAs) to cells is a very challenging task. We report here that a liposomal formulation composed of egg PC/cholesterol/DSPE-PEG2000 can be loaded, according to different encapsulation techniques, with PNA or fluorescent PNA oligomers. PNA loaded liposomes efficiently and quickly promote the uptake of a PNA targeting the microRNA miR-210 in human erythroleukemic K562 cells. By using this innovative delivery system for PNA, down-regulation of miR-210 is achieved at a low PNA concentration.
Collapse
Affiliation(s)
- Concetta Avitabile
- †Institute of Biostructure and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Antonella Accardo
- ‡Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Napoli, Italy.,§Interuniversity Research Centre on Bioactive Peptides (CIRPeB), via Mezzocannone 16, 80134 Napoli, Italy
| | - Paola Ringhieri
- ‡Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Napoli, Italy
| | - Giancarlo Morelli
- ‡Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Napoli, Italy.,§Interuniversity Research Centre on Bioactive Peptides (CIRPeB), via Mezzocannone 16, 80134 Napoli, Italy
| | - Michele Saviano
- §Interuniversity Research Centre on Bioactive Peptides (CIRPeB), via Mezzocannone 16, 80134 Napoli, Italy.,∥Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Giulia Montagner
- ⊥Department of Life Sciences and Biotechnologies, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Enrica Fabbri
- ⊥Department of Life Sciences and Biotechnologies, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Eleonora Gallerani
- ⊥Department of Life Sciences and Biotechnologies, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- ⊥Department of Life Sciences and Biotechnologies, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessandra Romanelli
- ‡Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Napoli, Italy.,§Interuniversity Research Centre on Bioactive Peptides (CIRPeB), via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
5
|
Cabrini G, Fabbri E, Lo Nigro C, Dechecchi MC, Gambari R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). Int J Oncol 2015; 47:417-28. [PMID: 26035292 PMCID: PMC4501657 DOI: 10.3892/ijo.2015.3026] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022] Open
Abstract
O-6-methylguanine-DNA methyltransferase (MGMT) is an abundantly expressed nuclear protein dealkylating O6-methylguanine (O6-MG) DNA residue, thus correcting the mismatches of O6-MG with a thymine residue during DNA replication. The dealkylating effect of MGMT is relevant not only in repairing DNA mismatches produced by environmental alkylating agents promoting tumor pathogenesis, but also when alkylating molecules are applied in the chemotherapy of different cancers, including glioma, the most common primary tumor of the central nervous system. Elevated MGMT gene expression is known to confer resistance to the treatment with the alkylating drug temozolomide in patients affected by gliomas and, on the contrary, methylation of MGMT gene promoter, which causes reduction of MGMT protein expression, is known to predict a favourable response to temozolomide. Thus, detecting expression levels of MGMT gene is crucial to indicate the option of alkylating agents or to select patients directly for a second line targeted therapy. Further study is required to gain insights into MGMT expression regulation, that has attracted growing interest recently in MGMT promoter methylation, histone acetylation and microRNAs expression. The review will focus on the epigenetic regulation of MGMT gene, with translational applications to the identification of biomarkers predicting response to therapy and prognosis.
Collapse
Affiliation(s)
- Giulio Cabrini
- Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiana Lo Nigro
- Department of Oncology, S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | | | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther 2014; 147:91-110. [PMID: 25448041 DOI: 10.1016/j.pharmthera.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
In spite of substantial advances in defining the immunobiology and function of structural cells in lung diseases there is still insufficient knowledge to develop fundamentally new classes of drugs to treat many lung diseases. For example, there is a compelling need for new therapeutic approaches to address severe persistent asthma that is insensitive to inhaled corticosteroids. Although the prevalence of steroid-resistant asthma is 5-10%, severe asthmatics require a disproportionate level of health care spending and constitute a majority of fatal asthma episodes. None of the established drug therapies including long-acting beta agonists or inhaled corticosteroids reverse established airway remodeling. Obstructive airways remodeling in patients with chronic obstructive pulmonary disease (COPD), restrictive remodeling in idiopathic pulmonary fibrosis (IPF) and occlusive vascular remodeling in pulmonary hypertension are similarly unresponsive to current drug therapy. Therefore, drugs are needed to achieve long-acting suppression and reversal of pathological airway and vascular remodeling. Novel drug classes are emerging from advances in epigenetics. Novel mechanisms are emerging by which cells adapt to environmental cues, which include changes in DNA methylation, histone modifications and regulation of transcription and translation by noncoding RNAs. In this review we will summarize current epigenetic approaches being applied to preclinical drug development addressing important therapeutic challenges in lung diseases. These challenges are being addressed by advances in lung delivery of oligonucleotides and small molecules that modify the histone code, DNA methylation patterns and miRNA function.
Collapse
Affiliation(s)
- Brian S Comer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Mariam Ba
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
7
|
Montagner G, Gemmo C, Fabbri E, Manicardi A, Accardo I, Bianchi N, Finotti A, Breveglieri G, Salvatori F, Borgatti M, Lampronti I, Bresciani A, Altamura S, Corradini R, Gambari R. Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells. Int J Mol Med 2014; 35:51-8. [PMID: 25405921 PMCID: PMC4249754 DOI: 10.3892/ijmm.2014.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine β-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies.
Collapse
Affiliation(s)
- Giulia Montagner
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Chiara Gemmo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alex Manicardi
- Department of Chemistry, University of Parma, Parma, Italy
| | - Igea Accardo
- Department of Chemistry, University of Parma, Parma, Italy
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesca Salvatori
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|