1
|
Wang Y, Jin B, Li B, Luo Y, Ma M, Chen Y, Liu H, Xie H, Yang T, Zhao X, Ding P. Cell-free protein synthesis of influenza virus hemagglutinin HA2-integrated virosomes for siRNA delivery. Int J Pharm 2022; 623:121890. [PMID: 35690307 DOI: 10.1016/j.ijpharm.2022.121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
It is well known that the difficulty of siRNA therapeutic application is the lack of safe and effective delivery vector. Virosome is a nano vesicle composed of lipid membrane and membrane protein. It retains fusion protein without virus genetic material, and therefore has the reduced immunogenicity compared with viral vector. Virosomes have the potential to deliver protein and nucleic acid drugs, but the traditional preparation method of virosomes is quite limited. In this study, we firstly proposed to synthesize influenza virus hemagglutinin HA2 virosomes by cell-free protein synthesis. In this study, liposomes provided the hydrophobic lipid bilayer environment for the formation of HA2 protein multimer, which inhibited the aggregation of hydrophobic HA2 and improved HA2 protein expression. Chitosan as a rigid core adsorbed siRNA and improved the encapsulation efficiency of siRNA. In conclusion, the cell-free protein synthesis was used to prepare HA2 virosomes, which paves the way for constructing a novel nano vector with high delivery efficiency and biosafety for the delivery of siRNA.
Collapse
Affiliation(s)
- Yichen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Jin
- The First Hospital, China Medical University, Department of Medical Oncology, Shenyang 110001, China
| | - Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yucen Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengrui Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
2
|
Trainor BM, Komar AA, Pestov DG, Shcherbik N. Cell-free Translation: Preparation and Validation of Translation-competent Extracts from Saccharomyces cerevisiae. Bio Protoc 2021; 11:e4093. [PMID: 34692902 PMCID: PMC8481029 DOI: 10.21769/bioprotoc.4093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/02/2022] Open
Abstract
Cell-free translation is a powerful technique for in vitro protein synthesis. While cell-free translation platforms prepared from bacterial, plant, and mammalian cells are commercially available, yeast-based translation systems remain proprietary knowledge of individual labs. Here, we provide a detailed protocol for simple, fast, and cost-effective preparation of the translation-competent cell-free extract (CFE) from budding yeast. Our protocol streamlines steps combined from different procedures published over the last three decades and incorporates cryogenic lysis of yeast cells to produce a high yield of the translationally active material. We also describe techniques for the validation and troubleshooting of the quality and translational activity of the obtained yeast CFE. Graphic abstract: The flow of Cell-Free Extract (CFE) preparation procedure.
Collapse
Affiliation(s)
- Brandon M. Trainor
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, New Jersey, USA
- Graduate School of Biomedical Sciences, Rowan University, 42 E. Laurel Road, Suite 2200, Stratford, New Jersey, USA
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, and the Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio, 44115, USA
| | - Dimitri G. Pestov
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, New Jersey, USA
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, New Jersey, USA
| |
Collapse
|
3
|
Abstract
A nonsense suppressor tRNA (sup-tRNA) allows a natural or non-natural amino acid to be assigned to a nonsense codon in mRNA. Sup-tRNAs were utilized initially for studying tRNA functions but lately are used more for protein engineering and gene regulation. In the latter application, a sup-tRNA that is aminoacylated with a natural amino acid by the corresponding aminoacyl-tRNA synthetase is used to express a full-length natural protein from its mutated gene with a nonsense codon in the middle. This type of sup-tRNA has recently been artificially evolved to develop biosensors. In these biosensors, an analyte induces the processing of an engineered premature sup-tRNA into a mature sup-tRNA, which suppresses the corresponding nonsense codon incorporated into a gene, encoding an easily detectable reporter protein. This review introduces sup-tRNA-based biosensors that the author's group has developed by utilizing bacterial and eukaryotic cell-free translation systems.
Collapse
|
4
|
Reyes SG, Kuruma Y, Fujimi M, Yamazaki M, Eto S, Nishikawa S, Tamaki S, Kobayashi A, Mizuuchi R, Rothschild L, Ditzler M, Fujishima K. PURE mRNA display and cDNA display provide rapid detection of core epitope motif via high-throughput sequencing. Biotechnol Bioeng 2021; 118:1736-1749. [PMID: 33501662 DOI: 10.1002/bit.27696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022]
Abstract
The reconstructed in vitro translation system known as the PURE system has been used in a variety of cell-free experiments such as the expression of native and de novo proteins as well as various display methods to select for functional polypeptides. We developed a refined PURE-based display method for the preparation of stable messenger RNA (mRNA) and complementary DNA (cDNA)-peptide conjugates and validated its utility for in vitro selection. Our conjugate formation efficiency exceeded 40%, followed by gel purification to allow minimum carry-over of components from the translation system to the downstream assay enabling clean and efficient random peptide sequence screening. We chose the commercially available anti-FLAG M2 antibody as a target molecule for validation. Starting from approximately 1.7 × 1012 random sequences, a round-by-round high-throughput sequencing showed clear enrichment of the FLAG epitope DYKDDD as well as revealing consensus FLAG epitope motif DYK(D/L/N)(L/Y/D/N/F)D. Enrichment of core FLAG motifs lacking one of the four key residues (DYKxxD) indicates that Tyr (Y) and Lys (K) appear as the two key residues essential for binding. Furthermore, the comparison between mRNA display and cDNA display method resulted in overall similar performance with slightly higher enrichment for mRNA display. We also show that gel purification steps in the refined PURE-based display method improve conjugate formation efficiency and enhance the enrichment rate of FLAG epitope motifs in later rounds of selection especially for mRNA display. Overall, the generalized procedure and consistent performance of two different display methods achieved by the commercially available PURE system will be useful for future studies to explore the sequence and functional space of diverse polypeptides.
Collapse
Affiliation(s)
- Sabrina Galiñanes Reyes
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Extra-cutting-edge Science and Technology Avant-garde Research Program, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan.,James Watt School of Engineering, The University of Glasgow, Glasgow, UK
| | - Yutetsu Kuruma
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Extra-cutting-edge Science and Technology Avant-garde Research Program, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan.,JST, PRESTO, Saitama, Japan
| | - Mai Fujimi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | | | - Sumie Eto
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,MOLCURE Inc., Shinagawa, Tokyo, Japan
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Asaki Kobayashi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Ryo Mizuuchi
- JST, PRESTO, Saitama, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Lynn Rothschild
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, California, USA
| | - Mark Ditzler
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, California, USA
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
5
|
Lu Y. Cell-free synthetic biology: Engineering in an open world. Synth Syst Biotechnol 2017; 2:23-27. [PMID: 29062958 PMCID: PMC5625795 DOI: 10.1016/j.synbio.2017.02.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/06/2017] [Indexed: 10/26/2022] Open
Abstract
Cell-free synthetic biology emerges as a powerful and flexible enabling technology that can engineer biological parts and systems for life science applications without using living cells. It provides simpler and faster engineering solutions with an unprecedented freedom of design in an open environment than cell system. This review focuses on recent developments of cell-free synthetic biology on biological engineering fields at molecular and cellular levels, including protein engineering, metabolic engineering, and artificial cell engineering. In cell-free protein engineering, the direct control of reaction conditions in cell-free system allows for easy synthesis of complex proteins, toxic proteins, membrane proteins, and novel proteins with unnatural amino acids. Cell-free systems offer the ability to design metabolic pathways towards the production of desired products. Buildup of artificial cells based on cell-free systems will improve our understanding of life and use them for environmental and biomedical applications.
Collapse
Affiliation(s)
- Yuan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
7
|
Merk H, Rues RB, Gless C, Beyer K, Dong F, Dötsch V, Gerrits M, Bernhard F. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing. Biol Chem 2016; 396:1097-107. [PMID: 25999328 DOI: 10.1515/hsz-2015-0105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022]
Abstract
G protein-coupled receptors, like many other membrane proteins, are notoriously difficult to synthesize in conventional cellular systems. Although expression in insect cells is considered the preferred technique for structural characterizations in particular, inefficient membrane translocation, instability, toxic effects and low yields still pose clear limitations for their production in living cells. Recent studies started to explore alternative strategies for the in vitro production of problematic membrane proteins in cell-free lysates in combination with supplied membranes. We provide a detailed study on the production efficiencies and quality of G protein-coupled receptors, Fab fragments and other proteins synthesized in insect cell lysates containing endogenous microsomes. Effects of different reaction kinetics, redox conditions and sample preparations on the specific activities of synthesized proteins have been analyzed. The extent of glycosylation, membrane translocation and percentages of ligand binding active fractions of synthesized protein samples have been determined. We provide strong evidence that membrane insertion of integral membrane proteins can represent a prime limiting factor for their preparative scale in vitro production. Improved expression protocols resulting into higher production rates yielded more active protein in case of Fab fragments, but not in case of the human endothelin B receptor.
Collapse
|