1
|
Hidayah SN, Biabani A, Gaikwad M, Nissen P, Voß H, Riedner M, Schlüter H, Siebels B. Application of sample displacement batch chromatography for fractionation of proteoforms. Proteomics 2024; 24:e2200424. [PMID: 37750450 DOI: 10.1002/pmic.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Fractionation of proteoforms is currently the most challenging topic in the field of proteoform analysis. The need for considering the existence of proteoforms in experimental approaches is not only important in Life Science research in general but especially in the manufacturing of therapeutic proteins (TPs) like recombinant therapeutic antibodies (mAbs). Some of the proteoforms of TPs have significantly decreased actions or even cause side effects. The identification and removal of proteoforms differing from the main species, having the desired action, is challenging because the difference in the composition of atoms is often very small and their concentration in comparison to the main proteoform can be low. In this study, we demonstrate that sample displacement batch chromatography (SDBC) is an easy-to-handle, economical, and efficient method for fractionating proteoforms. As a model sample a commercial ovalbumin fraction was used, containing many ovalbumin proteoforms. The most promising parameters for the SDBC were determined by a screening approach and applied for a 10-segment fractionation of ovalbumin with cation exchange chromatography resins. Mass spectrometry of intact proteoforms was used for characterizing the SDBC fractionation process. By SDBC, a significant separation of different proteoforms was obtained.
Collapse
Affiliation(s)
- Siti Nurul Hidayah
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia
| | - Ali Biabani
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manasi Gaikwad
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paula Nissen
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Riedner
- Technology Platform Mass Spectrometry, University of Hamburg, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bente Siebels
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Kwiatkowski M, Krösser D, Wurlitzer M, Steffen P, Barcaru A, Krisp C, Horvatovich P, Bischoff R, Schlüter H. Application of Displacement Chromatography to Online Two-Dimensional Liquid Chromatography Coupled to Tandem Mass Spectrometry Improves Peptide Separation Efficiency and Detectability for the Analysis of Complex Proteomes. Anal Chem 2018; 90:9951-9958. [PMID: 30014690 PMCID: PMC6106052 DOI: 10.1021/acs.analchem.8b02189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The complexity of
mammalian proteomes is a challenge in bottom-up
proteomics. For a comprehensive proteome analysis, multidimensional
separation strategies are necessary. Online two-dimensional liquid
chromatography–tandem mass spectrometry (2D-LC-MS/MS) combining
strong cation exchange (SCX) in the first dimension with reversed-phase
(RP) chromatography in the second dimension provides a powerful approach
to analyze complex proteomes. Although the combination of SCX with
RP chromatography provides a good orthogonality, only a moderate separation
is achieved in the first dimension for peptides with two (+2) or three
(+3) positive charges. The aim of this study was to improve the performance
of online SCX-RP-MS/MS by applying displacement chromatography to
the first separation dimension. Compared to gradient chromatography
mode (GCM), displacement chromatography mode (DCM) was expected to
improve the separation of +2-peptides and +3-peptides, thus reducing
complexity and increasing ionization and detectability. The results
show that DCM provided a separation of +2-peptides and +3-peptides
in remarkably sharp zones with a low degree of coelution, thus providing
fractions with significantly higher purities compared to GCM. In particular,
+2-peptides were separated over several fractions, which was not possible
to achieve in GCM. The better separation in DCM resulted in a higher
reproducibility and significantly higher identification rates for
both peptides and proteins including a 2.6-fold increase for +2-peptides.
The higher number of identified peptides in DCM resulted in significantly
higher protein sequence coverages and a considerably higher number
of unique peptides per protein. Compared to conventionally used salt-based
GCM, DCM increased the performance of online SCX-RP-MS/MS and enabled
comprehensive proteome profiling in the low microgram range.
Collapse
Affiliation(s)
- Marcel Kwiatkowski
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany.,Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy , University of Groningen , 9713 AV Groningen , The Netherlands
| | - Dennis Krösser
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| | - Marcus Wurlitzer
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| | - Pascal Steffen
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| | - Andrei Barcaru
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , 9713 AV Groningen , The Netherlands
| | - Christoph Krisp
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| | - Péter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , 9713 AV Groningen , The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , 9713 AV Groningen , The Netherlands
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| |
Collapse
|