1
|
Hojabri M, Tayebi T, Kasravi M, Aghdaee A, Ahmadi A, Mazloomnejad R, Tarasi R, Shaabani A, Bahrami S, Niknejad H. Wet-spinnability and crosslinked Fiber properties of alginate/hydroxyethyl cellulose with varied proportion for potential use in tendon tissue engineering. Int J Biol Macromol 2023; 240:124492. [PMID: 37072060 DOI: 10.1016/j.ijbiomac.2023.124492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Researchers have examined different bio-inspired materials in tissue engineering and regenerative medicine to fabricate scaffolds to address tendon regeneration requirements. We developed fibers based on alginate (Alg) and hydroxyethyl cellulose (HEC) by wet-spinning technique to mimic the fibrous sheath of ECM. Various proportions (25:75, 50:50, 75:25) of 1 % Alg and 4 % HEC were blended to this aim. Two steps of crosslinking with different concentrations of CaCl2 (2.5 and 5 %) and glutaraldehyde (2.5 %) were used to improve physical and mechanical properties. The fibers were characterized by FTIR, SEM, swelling, degradation, and tensile tests. The in vitro proliferation, viability, and migration of tenocytes on the fibers were also evaluated. Moreover, the biocompatibility of implanted fibers was investigated in an animal model. The results showed ionic and covalent molecular interactions between the components. In addition, by properly maintaining surface morphology, fiber alignment, and swelling, lower concentrations of HEC in the blending provided good degradability and mechanical features. The mechanical strength of fibers was in the range of collagenous fibers. Increasing the crosslinking led to significantly different mechanical behaviors in terms of tensile strength and elongation at break. Because of good in vitro and in vivo biocompatibility, tenocyte proliferation, and migration, the biological macromolecular fibers could serve as desirable tendon substitutes. This study provides more practical insight into tendon tissue engineering in translational medicine.
Collapse
Affiliation(s)
- Mahsa Hojabri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Aghdaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Tarasi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bao R, Cheng S, Zhu J, Hai F, Mi W, Liu S. A Simplified Murine Model to Imitate Flexor Tendon Adhesion Formation without Suture. Biomimetics (Basel) 2022; 7:biomimetics7030092. [PMID: 35892362 PMCID: PMC9326731 DOI: 10.3390/biomimetics7030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Peritendinous adhesion (PA) around tendons are daunting challenges for hand surgeons. Tenotomy with various sutures are considered classical tendon repair models (TRM) of tendon adhesion as well as tendon healing. However, potential biomimetic therapies such as anti-adhesion barriers and artificial tendon sheaths to avoid recurrence of PA are sometimes tested in these models without considering tendon healing. Thus, our aim is to create a simplified model without sutures in this study by using three 6 mm longitudinal and parallel incisions called the longitudinal incision model (LCM) in the murine flexor tendon. We found that the adhesion score of LCM has no significant difference to that in TRM. The range of motion (ROM) reveals similar adhesion formation in both TRM and LCM groups. Moreover, mRNA expression levels of collagen I and III in LCM shows no significant difference to that in TRM. The breaking force and stiffness of LCM were significantly higher than that of TRM. Therefore, LCM can imitate flexor tendon adhesion formation without sutures compared to TRM, without significant side effects on biomechanics with an easy operation.
Collapse
Affiliation(s)
- Rong Bao
- Department of Orthopaedics, Sixth People’s Hospital, Jiao Tong University, 600 Yishan Rd, Shanghai 200233, China;
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; (S.C.); (J.Z.); (F.H.)
| | - Shi Cheng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; (S.C.); (J.Z.); (F.H.)
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; (S.C.); (J.Z.); (F.H.)
| | - Feng Hai
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; (S.C.); (J.Z.); (F.H.)
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; (S.C.); (J.Z.); (F.H.)
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
- Correspondence: (W.M.); (S.L.)
| | - Shen Liu
- Department of Orthopaedics, Sixth People’s Hospital, Jiao Tong University, 600 Yishan Rd, Shanghai 200233, China;
- Correspondence: (W.M.); (S.L.)
| |
Collapse
|
3
|
Chen S, Jiang S, Zheng W, Tu B, Liu S, Ruan H, Fan C. RelA/p65 inhibition prevents tendon adhesion by modulating inflammation, cell proliferation, and apoptosis. Cell Death Dis 2017; 8:e2710. [PMID: 28358376 PMCID: PMC5386538 DOI: 10.1038/cddis.2017.135] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/15/2022]
Abstract
Peritendinous tissue fibrosis which leads to poor tendon function is a worldwide clinical problem; however, its mechanism remains unclear. Transcription factor RelA/p65, an important subunit in the NF-κB complex, is known to have a critical role in many fibrotic diseases. Here, we show that RelA/p65 functions as a core fibrogenic regulator in tendon adhesion and that its inhibition exerts an anti-fibrogenic effect on peritendinous adhesion. We detected the upregulation of the NF-κB pathway in human tendon adhesion using a gene chip microarray assay and revealed the overexpression of p65 and extracellular matrix (ECM) proteins Collagen I, Collagen III, and α-smooth muscle actin (α-SMA) in human fibrotic tissues by immunohistochemistry and western blotting. We also found that in a rat model of tendon injury, p65 expression correlated with tendon adhesion, whereas its inhibition by small interfering (si)RNA prevented fibrous tissue formation and inflammatory reaction as evidenced by macroscopic, biomechanical, histological, immunohistochemical, and western blotting analyses. Furthermore, in cultured fibroblasts, p65-siRNA, p65-specific inhibitor, Helenalin and JSH23 suppressed cell proliferation and promoted apoptosis, whereas inhibiting the mRNA and protein expression of ECM components and cyclo-oxygenase-2, an inflammatory factor involved in tendon adhesion. Our findings indicate that p65 has a critical role in peritendinous tissue fibrosis and suggest that p65 knockdown may be a promising therapeutic approach to prevent tendon adhesion.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Shichao Jiang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, Shandong, People's Republic of China
| | - Wei Zheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Bing Tu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Hongjiang Ruan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| |
Collapse
|
4
|
Linderman SW, Gelberman RH, Thomopoulos S, Shen H. Cell and Biologic-Based Treatment of Flexor Tendon Injuries. ACTA ACUST UNITED AC 2016; 26:206-215. [PMID: 28042226 DOI: 10.1053/j.oto.2016.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two primary factors leading to poor clinical results after intrasynovial tendon repair are adhesion formation within the digital sheath and repair-site elongation and rupture. As the outcomes following modern tendon multi-strand repair and controlled rehabilitation techniques are often unsatisfactory, alternative approaches, such as the application of growth factors and mesenchymal stem cells (MSCs), have become increasingly attractive treatment options. Successful biological therapies require carefully controlled spatiotemporal delivery of cells, growth factors, and biocompatible scaffold matrices in order to simultaneously (1) promote matrix synthesis at the tendon repair site leading to increased biomechanical strength and stiffness and (2) suppress matrix synthesis along the tendon surface and synovial sheath preventing adhesion formation. This review summarizes recent cell and biologic-based experimental treatments for flexor tendon injury, with an emphasis on large animal translational studies.
Collapse
Affiliation(s)
- Stephen W Linderman
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Richard H Gelberman
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Columbia University, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Hua Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States
| |
Collapse
|