1
|
De Bruyn P, Prolič-Kalinšek M, Vandervelde A, Malfait M, Sterckx YGJ, Sobott F, Hadži S, Pardon E, Steyaert J, Loris R. Nanobody-aided crystallization of the transcription regulator PaaR2 from Escherichia coli O157:H7. Acta Crystallogr F Struct Biol Commun 2021; 77:374-384. [PMID: 34605442 PMCID: PMC8488858 DOI: 10.1107/s2053230x21009006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
paaR2-paaA2-parE2 is a three-component toxin-antitoxin module found in prophage CP-993P of Escherichia coli O157:H7. Transcription regulation of this module occurs via the 123-amino-acid regulator PaaR2, which forms a large oligomeric structure. Despite appearing to be well folded, PaaR2 withstands crystallization, as does its N-terminal DNA-binding domain. Native mass spectrometry was used to screen for nanobodies that form a unique complex and stabilize the octameric structure of PaaR2. One such nanobody, Nb33, allowed crystallization of the protein. The resulting crystals belong to space group F432, with unit-cell parameter a = 317 Å, diffract to 4.0 Å resolution and are likely to contain four PaaR2 monomers and four nanobody monomers in the asymmetric unit. Crystals of two truncates containing the N-terminal helix-turn-helix domain also interact with Nb33, and the corresponding co-crystals diffracted to 1.6 and 1.75 Å resolution.
Collapse
Affiliation(s)
- Pieter De Bruyn
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Maruša Prolič-Kalinšek
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexandra Vandervelde
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Milan Malfait
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Yann G.-J. Sterckx
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Zhuang X, Watts NR, Palmer IW, Kaufman JD, Dearborn AD, Trenbeath JL, Eren E, Steven AC, Rader C, Wingfield PT. Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy. J Biol Chem 2017; 292:16760-16772. [PMID: 28842495 DOI: 10.1074/jbc.m117.802272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli, had unprecedentedly high binding affinities (Kd ∼10-12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.
Collapse
Affiliation(s)
| | | | | | | | | | - Joni L Trenbeath
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Christoph Rader
- the Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | | |
Collapse
|