1
|
Strijbis VI, Gurney-Champion O, Slotman BJ, Verbakel WF. Impact of annotation imperfections and auto-curation for deep learning-based organ-at-risk segmentation. Phys Imaging Radiat Oncol 2024; 32:100684. [PMID: 39720784 PMCID: PMC11667007 DOI: 10.1016/j.phro.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Background and purpose Segmentation imperfections (noise) in radiotherapy organ-at-risk segmentation naturally arise from specialist experience and image quality. Using clinical contours can result in sub-optimal convolutional neural network (CNN) training and performance, but manual curation is costly. We address the impact of simulated and clinical segmentation noise on CNN parotid gland (PG) segmentation performance and provide proof-of-concept for an easily implemented auto-curation countermeasure. Methods and Materials The impact of segmentation imperfections was investigated by simulating noise in clean, high-quality segmentations. Curation efficacy was tested by removing lowest-scoring Dice similarity coefficient (DSC) cases early during CNN training, both in simulated (5-fold) and clinical (10-fold) settings, using our full radiotherapy clinical cohort (RTCC; N = 1750 individual PGs). Statistical significance was assessed using Bonferroni-corrected Wilcoxon signed-rank tests. Curation efficacies were evaluated using DSC and mean surface distance (MSD) on in-distribution and out-of-distribution data and visual inspection. Results The curation step correctly removed median(range) 98(90-100)% of corrupted segmentations and restored the majority (1.2 %/1.3 %) of DSC lost from training with 30 % corrupted segmentations. This effect was masked when using typical (non-curated) validation data. In RTCC, 20 % curation showed improved model generalizability which significantly improved out-of-distribution DSC and MSD (p < 1.0e-12, p < 1.0e-6). Improved consistency was observed in particularly the medial and anterior lobes. Conclusions Up to 30% case removal, the curation benefit outweighed the training variance lost through curation. Considering the notable ease of implementation, high sensitivity in simulations and performance gains already at lower curation fractions, as a conservative middle ground, we recommend 15% curation of training cases when training CNNs using clinical PG contours.
Collapse
Affiliation(s)
- Victor I.J. Strijbis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
| | - O.J. Gurney-Champion
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Berend J. Slotman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
| | - Wilko F.A.R. Verbakel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
- Varian Medical Systems, a Siemens Healthineers Company, Palo Alto, USA
| |
Collapse
|
2
|
Doolan PJ, Charalambous S, Roussakis Y, Leczynski A, Peratikou M, Benjamin M, Ferentinos K, Strouthos I, Zamboglou C, Karagiannis E. A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Front Oncol 2023; 13:1213068. [PMID: 37601695 PMCID: PMC10436522 DOI: 10.3389/fonc.2023.1213068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose/objectives Auto-segmentation with artificial intelligence (AI) offers an opportunity to reduce inter- and intra-observer variability in contouring, to improve the quality of contours, as well as to reduce the time taken to conduct this manual task. In this work we benchmark the AI auto-segmentation contours produced by five commercial vendors against a common dataset. Methods and materials The organ at risk (OAR) contours generated by five commercial AI auto-segmentation solutions (Mirada (Mir), MVision (MV), Radformation (Rad), RayStation (Ray) and TheraPanacea (Ther)) were compared to manually-drawn expert contours from 20 breast, 20 head and neck, 20 lung and 20 prostate patients. Comparisons were made using geometric similarity metrics including volumetric and surface Dice similarity coefficient (vDSC and sDSC), Hausdorff distance (HD) and Added Path Length (APL). To assess the time saved, the time taken to manually draw the expert contours, as well as the time to correct the AI contours, were recorded. Results There are differences in the number of CT contours offered by each AI auto-segmentation solution at the time of the study (Mir 99; MV 143; Rad 83; Ray 67; Ther 86), with all offering contours of some lymph node levels as well as OARs. Averaged across all structures, the median vDSCs were good for all systems and compared favorably with existing literature: Mir 0.82; MV 0.88; Rad 0.86; Ray 0.87; Ther 0.88. All systems offer substantial time savings, ranging between: breast 14-20 mins; head and neck 74-93 mins; lung 20-26 mins; prostate 35-42 mins. The time saved, averaged across all structures, was similar for all systems: Mir 39.8 mins; MV 43.6 mins; Rad 36.6 min; Ray 43.2 mins; Ther 45.2 mins. Conclusions All five commercial AI auto-segmentation solutions evaluated in this work offer high quality contours in significantly reduced time compared to manual contouring, and could be used to render the radiotherapy workflow more efficient and standardized.
Collapse
Affiliation(s)
- Paul J. Doolan
- Department of Medical Physics, German Oncology Center, Limassol, Cyprus
| | | | - Yiannis Roussakis
- Department of Medical Physics, German Oncology Center, Limassol, Cyprus
| | - Agnes Leczynski
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
| | - Mary Peratikou
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
| | - Melka Benjamin
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
| | - Konstantinos Ferentinos
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Iosif Strouthos
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Constantinos Zamboglou
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Radiation Oncology, Medical Center – University of Freiberg, Freiberg, Germany
| | - Efstratios Karagiannis
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Costea M, Zlate A, Durand M, Baudier T, Grégoire V, Sarrut D, Biston MC. Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system. Radiother Oncol 2022; 177:61-70. [PMID: 36328093 DOI: 10.1016/j.radonc.2022.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the performance of head-and-neck (HN) organs-at-risk (OAR) automatic segmentation (AS) using four atlas-based (ABAS) and two deep learning (DL) solutions. MATERIAL AND METHODS All patients underwent iodine contrast-enhanced planning CT. Fourteen OAR were manually delineated. DL.1 and DL.2 solutions were trained with 63 mono-centric patients and > 1000 multi-centric patients, respectively. Ten and 15 patients with varied anatomies were selected for the atlas library and for testing, respectively. The evaluation was based on geometric indices (DICE coefficient and 95th percentile-Hausdorff Distance (HD95%)), time needed for manual corrections and clinical dosimetric endpoints obtained using automated treatment planning. RESULTS Both DICE and HD95% results indicated that DL algorithms generally performed better compared with ABAS algorithms for automatic segmentation of HN OAR. However, the hybrid-ABAS (ABAS.3) algorithm sometimes provided the highest agreement to the reference contours compared with the 2 DL. Compared with DL.2 and ABAS.3, DL.1 contours were the fastest to correct. For the 3 solutions, the differences in dose distributions obtained using AS contours and AS + manually corrected contours were not statistically significant. High dose differences could be observed when OAR contours were at short distances to the targets. However, this was not always interrelated. CONCLUSION DL methods generally showed higher delineation accuracy compared with ABAS methods for AS segmentation of HN OAR. Most ABAS contours had high conformity to the reference but were more time consuming than DL algorithms, especially when considering the computing time and the time spent on manual corrections.
Collapse
Affiliation(s)
- Madalina Costea
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | | | - Morgane Durand
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France
| | - Thomas Baudier
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | | | - David Sarrut
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - Marie-Claude Biston
- Centre Léon Bérard, 28 rue Laennec, 69373 LYON Cedex 08, France; CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.
| |
Collapse
|
4
|
Cubero L, Castelli J, Simon A, de Crevoisier R, Acosta O, Pascau J. Deep Learning-Based Segmentation of Head and Neck Organs-at-Risk with Clinical Partially Labeled Data. ENTROPY (BASEL, SWITZERLAND) 2022; 24:e24111661. [PMID: 36421515 PMCID: PMC9689629 DOI: 10.3390/e24111661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 06/06/2023]
Abstract
Radiotherapy is one of the main treatments for localized head and neck (HN) cancer. To design a personalized treatment with reduced radio-induced toxicity, accurate delineation of organs at risk (OAR) is a crucial step. Manual delineation is time- and labor-consuming, as well as observer-dependent. Deep learning (DL) based segmentation has proven to overcome some of these limitations, but requires large databases of homogeneously contoured image sets for robust training. However, these are not easily obtained from the standard clinical protocols as the OARs delineated may vary depending on the patient's tumor site and specific treatment plan. This results in incomplete or partially labeled data. This paper presents a solution to train a robust DL-based automated segmentation tool exploiting a clinical partially labeled dataset. We propose a two-step workflow for OAR segmentation: first, we developed longitudinal OAR-specific 3D segmentation models for pseudo-contour generation, completing the missing contours for some patients; with all OAR available, we trained a multi-class 3D convolutional neural network (nnU-Net) for final OAR segmentation. Results obtained in 44 independent datasets showed superior performance of the proposed methodology for the segmentation of fifteen OARs, with an average Dice score coefficient and surface Dice similarity coefficient of 80.59% and 88.74%. We demonstrated that the model can be straightforwardly integrated into the clinical workflow for standard and adaptive radiotherapy.
Collapse
Affiliation(s)
- Lucía Cubero
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, 28911 Madrid, Spain
- Université Rennes, CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, F-35000 Rennes, France
| | - Joël Castelli
- Université Rennes, CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, F-35000 Rennes, France
| | - Antoine Simon
- Université Rennes, CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, F-35000 Rennes, France
| | - Renaud de Crevoisier
- Université Rennes, CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, F-35000 Rennes, France
| | - Oscar Acosta
- Université Rennes, CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, F-35000 Rennes, France
| | - Javier Pascau
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, 28911 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| |
Collapse
|
5
|
Vandewinckele L, Willems S, Lambrecht M, Berkovic P, Maes F, Crijns W. Treatment plan prediction for lung IMRT using deep learning based fluence map generation. Phys Med 2022; 99:44-54. [DOI: 10.1016/j.ejmp.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/09/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022] Open
|
6
|
Samarasinghe G, Jameson M, Vinod S, Field M, Dowling J, Sowmya A, Holloway L. Deep learning for segmentation in radiation therapy planning: a review. J Med Imaging Radiat Oncol 2021; 65:578-595. [PMID: 34313006 DOI: 10.1111/1754-9485.13286] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022]
Abstract
Segmentation of organs and structures, as either targets or organs-at-risk, has a significant influence on the success of radiation therapy. Manual segmentation is a tedious and time-consuming task for clinicians, and inter-observer variability can affect the outcomes of radiation therapy. The recent hype over deep neural networks has added many powerful auto-segmentation methods as variations of convolutional neural networks (CNN). This paper presents a descriptive review of the literature on deep learning techniques for segmentation in radiation therapy planning. The most common CNN architecture across the four clinical sub sites considered was U-net, with the majority of deep learning segmentation articles focussed on head and neck normal tissue structures. The most common data sets were CT images from an inhouse source, along with some public data sets. N-fold cross-validation was commonly employed; however, not all work separated training, test and validation data sets. This area of research is expanding rapidly. To facilitate comparisons of proposed methods and benchmarking, consistent use of appropriate metrics and independent validation should be carefully considered.
Collapse
Affiliation(s)
- Gihan Samarasinghe
- School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Ingham Institute for Applied Medical Research and South Western Sydney Clinical School, UNSW, Liverpool, New South Wales, Australia
| | - Michael Jameson
- Genesiscare, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Shalini Vinod
- Ingham Institute for Applied Medical Research and South Western Sydney Clinical School, UNSW, Liverpool, New South Wales, Australia.,Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Matthew Field
- Ingham Institute for Applied Medical Research and South Western Sydney Clinical School, UNSW, Liverpool, New South Wales, Australia.,Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Jason Dowling
- Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, Queensland, Australia
| | - Arcot Sowmya
- School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Lois Holloway
- Ingham Institute for Applied Medical Research and South Western Sydney Clinical School, UNSW, Liverpool, New South Wales, Australia.,Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
7
|
van der Veen J, Gulyban A, Willems S, Maes F, Nuyts S. Interobserver variability in organ at risk delineation in head and neck cancer. Radiat Oncol 2021; 16:120. [PMID: 34183040 PMCID: PMC8240214 DOI: 10.1186/s13014-020-01677-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022] Open
Abstract
Background In radiotherapy inaccuracy in organ at risk (OAR) delineation can impact treatment plan optimisation and treatment plan evaluation. Brouwer et al. showed significant interobserver variability (IOV) in OAR delineation in head and neck cancer (HNC) and published international consensus guidelines (ICG) for OAR delineation in 2015. The aim of our study was to evaluate IOV in the presence of these guidelines. Methods HNC radiation oncologists (RO) from each Belgian radiotherapy centre were invited to complete a survey and submit contours for 5 HNC cases. Reference contours (OARref) were obtained by a clinically validated artificial intelligence-tool trained using ICG. Dice similarity coefficients (DSC), mean surface distance (MSD) and 95% Hausdorff distances (HD95) were used for comparison. Results Fourteen of twenty-two RO (64%) completed the survey and submitted delineations. Thirteen (93%) confirmed the use of delineation guidelines, of which six (43%) used the ICG. The OARs whose delineations agreed best with the OARref were mandible [median DSC 0.9, range (0.8–0.9); median MSD 1.1 mm, range (0.8–8.3), median HD95 3.4 mm, range (1.5–38.7)], brainstem [median DSC 0.9 (0.6–0.9); median MSD 1.5 mm (1.1–4.0), median HD95 4.0 mm (2.3–15.0)], submandibular glands [median DSC 0.8 (0.5–0.9); median MSD 1.2 mm (0.9–2.5), median HD95 3.1 mm (1.8–12.2)] and parotids [median DSC 0.9 (0.6–0.9); median MSD 1.9 mm (1.2–4.2), median HD95 5.1 mm (3.1–19.2)]. Oral cavity, cochleas, PCMs, supraglottic larynx and glottic area showed more variation. RO who used the consensus guidelines showed significantly less IOV (p = 0.008). Conclusions Although ICG for delineation of OARs in HNC exist, they are only implemented by about half of RO participating in this study, which partly explains the delineation variability. However, this study highlights that guidelines alone do not suffice to eliminate IOV and that more effort needs to be done to accomplish further treatment standardisation, for example with artificial intelligence.
Supplementary information Supplementary information accompanies this paper at 10.1186/s13014-020-01677-2.
Collapse
Affiliation(s)
- J van der Veen
- Department of Oncology, Radiation-Oncology, University of Leuven, University Hospitals Leuven, 3000, Leuven, KU, Belgium
| | - A Gulyban
- Department of Medical Physics, Jules Bordet Institute, Brussels, Belgium.
| | - S Willems
- Department ESAT, Processing Speech and Images (PSI), Medical Imaging Research Center, KU Leuven, University Hospitals Leuven, 3000, Leuven, Belgium
| | - F Maes
- Department ESAT, Processing Speech and Images (PSI), Medical Imaging Research Center, KU Leuven, University Hospitals Leuven, 3000, Leuven, Belgium
| | - S Nuyts
- Department of Oncology, Radiation-Oncology, University of Leuven, University Hospitals Leuven, 3000, Leuven, KU, Belgium.
| |
Collapse
|
8
|
Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance. Radiother Oncol 2020; 153:55-66. [PMID: 32920005 DOI: 10.1016/j.radonc.2020.09.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Artificial Intelligence (AI) is currently being introduced into different domains, including medicine. Specifically in radiation oncology, machine learning models allow automation and optimization of the workflow. A lack of knowledge and interpretation of these AI models can hold back wide-spread and full deployment into clinical practice. To facilitate the integration of AI models in the radiotherapy workflow, generally applicable recommendations on implementation and quality assurance (QA) of AI models are presented. For commonly used applications in radiotherapy such as auto-segmentation, automated treatment planning and synthetic computed tomography (sCT) the basic concepts are discussed in depth. Emphasis is put on the commissioning, implementation and case-specific and routine QA of AI models needed for a methodical introduction in clinical practice.
Collapse
|
9
|
Vrtovec T, Močnik D, Strojan P, Pernuš F, Ibragimov B. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods. Med Phys 2020; 47:e929-e950. [PMID: 32510603 DOI: 10.1002/mp.14320] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is one of the basic treatment modalities for cancer of the head and neck (H&N), which requires a precise spatial description of the target volumes and organs at risk (OARs) to deliver a highly conformal radiation dose to the tumor cells while sparing the healthy tissues. For this purpose, target volumes and OARs have to be delineated and segmented from medical images. As manual delineation is a tedious and time-consuming task subjected to intra/interobserver variability, computerized auto-segmentation has been developed as an alternative. The field of medical imaging and RT planning has experienced an increased interest in the past decade, with new emerging trends that shifted the field of H&N OAR auto-segmentation from atlas-based to deep learning-based approaches. In this review, we systematically analyzed 78 relevant publications on auto-segmentation of OARs in the H&N region from 2008 to date, and provided critical discussions and recommendations from various perspectives: image modality - both computed tomography and magnetic resonance image modalities are being exploited, but the potential of the latter should be explored more in the future; OAR - the spinal cord, brainstem, and major salivary glands are the most studied OARs, but additional experiments should be conducted for several less studied soft tissue structures; image database - several image databases with the corresponding ground truth are currently available for methodology evaluation, but should be augmented with data from multiple observers and multiple institutions; methodology - current methods have shifted from atlas-based to deep learning auto-segmentation, which is expected to become even more sophisticated; ground truth - delineation guidelines should be followed and participation of multiple experts from multiple institutions is recommended; performance metrics - the Dice coefficient as the standard volumetric overlap metrics should be accompanied with at least one distance metrics, and combined with clinical acceptability scores and risk assessments; segmentation performance - the best performing methods achieve clinically acceptable auto-segmentation for several OARs, however, the dosimetric impact should be also studied to provide clinically relevant endpoints for RT planning.
Collapse
Affiliation(s)
- Tomaž Vrtovec
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Domen Močnik
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Primož Strojan
- Institute of Oncology Ljubljana, Zaloška cesta 2, Ljubljana, SI-1000, Slovenia
| | - Franjo Pernuš
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia
| | - Bulat Ibragimov
- Faculty Electrical Engineering, University of Ljubljana, Tržaška cesta 25, Ljubljana, SI-1000, Slovenia.,Department of Computer Science, University of Copenhagen, Universitetsparken 1, Copenhagen, D-2100, Denmark
| |
Collapse
|
10
|
Benefits of deep learning for delineation of organs at risk in head and neck cancer. Radiother Oncol 2019; 138:68-74. [DOI: 10.1016/j.radonc.2019.05.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022]
|