1
|
Zou Y, Hu Y, Shen Z, Yao L, Tang D, Zhang S, Wang S, Hu B, Zhao G, Wang X. Application of aluminosilicate clay mineral-based composites in photocatalysis. J Environ Sci (China) 2022; 115:190-214. [PMID: 34969448 DOI: 10.1016/j.jes.2021.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 05/18/2023]
Abstract
Aluminosilicate clay mineral (ACM) is a kind of typical raw materials that used widely in manufacturing industry owing to the abundant reserve and low-cost exploring. In past two decades, in-depth understanding on unique layered structure and abundant surface properties endows ACM in the emerging research and application fields. In field of solar-chemical energy conversion, ACM has been widely used to support various semiconductor photocatalysts, forming the composites and achieving efficient conversion of reactants under sunlight irradiation. To date, classic ACM such as kaolinite and montmorillonite, loaded with semiconductor photocatalysts has been widely applied in photocatalysis. This review summaries the recent works on ACM-based composites in photocatalysis. Focusing on the properties of surface and layered structure, we elucidate the different features in the composition with various functional photocatalysts on two typical kinds of ACM, i.e., type 1:1 and type 2:1. Not only large surface area and active surface hydroxyl group assist the substrate adsorption, but also the layered structure provides more space to enlarge the application of ACM-based photocatalysts. Besides, we overview the modifications on ACM from both external surface and the inter-layer space that make the formation of composites more efficiently and boost the photo-chemical process. This review could inspire more upcoming design and synthesis for ACM-based photocatalysts, leading this kind of economic and eco-friendly materials for more practical application in the future.
Collapse
Affiliation(s)
- Yingtong Zou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ling Yao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Duoyue Tang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Sai Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
2
|
Yang S, Xiao X, E T. Removing low concentration of Cr (III) from wastewater: Using titanium dioxide surface modified montmorillonite as a selective adsorbent. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|