1
|
Badea D, Dardenne K, Polly R, Rothe J, Hanrath M, Reimer M, Meerholz K, Neudörfl J, Strub E, Bruns J. Reaction of Pertechnetate in Highly Alkaline Solution: Synthesis and Characterization of the Nitridotrioxotechnetate Ba[TcO 3 N]. Chemistry 2022; 28:e202201738. [PMID: 35951451 PMCID: PMC9826414 DOI: 10.1002/chem.202201738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 01/11/2023]
Abstract
The preparation of novel technetium oxides, their characterization and the general investigation of technetium chemistry are of significant importance, since fundamental research has so far mainly focused on the group homologues. Whereas the structure chemistry of technetium in strongly oxidizing media is dominated by theTc O 4 - ${{\left[{\rm { Tc}}{{\rm { O}}}_{{\rm { 4}}}\right]}^{-}}$ anion, our recent investigation yielded the newTc O 3 N 2 - ${{\left[{\rm { Tc}}{{\rm { O}}}_{{\rm { 3}}}{\rm { N}}\right]}^{{\rm { 2}}-}}$ anion. Brown single crystals of Ba[TcO3 N] were obtained under hydrothermal conditions starting from Ba(OH)2 ⋅ 8H2 O and NH4 [TcO4 ] at 200 °C.Ba [ Tc O 3 N ] ${{\rm { Ba[Tc}}{{\rm { O}}}_{{\rm { 3}}}{\rm { N]}}}$ crystallizes in the monoclinic crystal system with the space group P21 /n (a=7.2159(4) Å, b=7.8536(5) Å, c=7.4931(4) Å and β=104.279(2)°). The crystal structure ofBa [ Tc O 3 N ] ${{\rm { Ba[Tc}}{{\rm { O}}}_{{\rm { 3}}}{\rm { N]}}}$ consists of isolatedTc O 3 N 2 - ${{\left[{\rm { Tc}}{{\rm { O}}}_{{\rm { 3}}}{\rm { N}}\right]}^{{\rm { 2}}-}}$ tetrahedra, which are surrounded by Ba2+ cations. XANES measurements complement the oxidation state +VII for technetium and Raman spectroscopic experiments on Ba[TcO3 N] single crystals exhibit characteristic Tc-O and Tc-N vibrational modes.
Collapse
Affiliation(s)
- D. Badea
- Department of ChemistryUniversity of CologneGreinstr. 4–650939CologneGermany
| | - K. Dardenne
- Institute for Nuclear Waste DisposalKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - R. Polly
- Institute for Nuclear Waste DisposalKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - J. Rothe
- Institute for Nuclear Waste DisposalKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - M. Hanrath
- Department of ChemistryUniversity of CologneGreinstr. 4–650939CologneGermany
| | - M. Reimer
- Department of ChemistryUniversity of CologneGreinstr. 4–650939CologneGermany
| | - K. Meerholz
- Department of ChemistryUniversity of CologneGreinstr. 4–650939CologneGermany
| | - J.‐M. Neudörfl
- Department of ChemistryUniversity of CologneGreinstr. 4–650939CologneGermany
| | - E. Strub
- Department of ChemistryUniversity of CologneGreinstr. 4–650939CologneGermany
| | - J. Bruns
- Department of ChemistryUniversity of CologneGreinstr. 4–650939CologneGermany
| |
Collapse
|
2
|
Sergentu DC, Autschbach J. X-ray absorption spectra of f-element complexes: insight from relativistic multiconfigurational wavefunction theory. Dalton Trans 2022; 51:1754-1764. [PMID: 35022645 DOI: 10.1039/d1dt04075h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
X-ray absorption near edge structure (XANES) spectroscopy, coupled with ab initio calculations, has emerged as the state-of-the-art tool for elucidating the metal-ligand bonding in f-element complexes. This highlight presents recent efforts in calculating XANES spectra of lanthanide and actinide compounds with relativistic multiconfiguration wavefunction approaches that account for differences in donation bonding in the ground state (GS) versus a core-excited state (ES), multiplet effects, and spin-orbit-coupling. With the GS and ES wavefunctions available, including spin-orbit effects, an arsenal of chemical bonding tools that are popular among chemists can be applied to rationalize the observed intensities in terms of covalent bonding.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| |
Collapse
|
3
|
Delcey MG, Lindblad R, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Lundberg M. Soft x-ray signatures of ionic manganese-oxo systems, including a high-spin manganese(V) complex. Phys Chem Chem Phys 2022; 24:3598-3610. [DOI: 10.1039/d1cp03667j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-oxo species catalyze key reactions, including C–H bond activation or dioxygen formation in natural photosynthesis. To better understand relevant reaction intermediates, we characterize electronic states and geometric structures of [MnOn]+...
Collapse
|
4
|
Temperton RH, Guo M, D'Acunto G, Johansson N, Rosemann NW, Prakash O, Wärnmark K, Schnadt J, Uhlig J, Persson P. Resonant X-ray photo-oxidation of light-harvesting iron (II/III) N-heterocyclic carbene complexes. Sci Rep 2021; 11:22144. [PMID: 34772983 PMCID: PMC8590020 DOI: 10.1038/s41598-021-01509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022] Open
Abstract
Two photoactive iron N-heterocyclic carbene complexes \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\hbox {Fe}^{{{\rm{II}}}}(\hbox {btz})_2(\hbox {bpy})]^{2+}}$$\end{document}[FeII(btz)2(bpy)]2+ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\hbox {Fe}^{{\rm{III}}}(\hbox {btz})_3]^{3+}}$$\end{document}[FeIII(btz)3]3+, where btz is 3,3’-dimethyl-1,1’-bis(p-tolyl)-4,4’-bis(1,2,3-triazol-5-ylidene) and bpy is 2,2’-bipyridine, have been investigated by Resonant Photoelectron Spectroscopy (RPES). Tuning the incident X-ray photon energy to match core-valence excitations provides a site specific probe of the electronic structure properties and ligand-field interactions, as well as information about the resonantly photo-oxidised final states. Comparing measurements of the Fe centre and the surrounding ligands demonstrate strong mixing of the Fe \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hbox {t}_{{\rm{2g}}}}$$\end{document}t2g levels with occupied ligand \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π orbitals but weak mixing with the corresponding unoccupied ligand orbitals. This highlights the importance of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π-accepting and -donating considerations in ligand design strategies for photofunctional iron carbene complexes. Spin-propensity is also observed as a final-state effect in the RPES measurements of the open-shell \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{III}}}$$\end{document}FeIII complex. Vibronic coupling is evident in both complexes, where the energy dispersion hints at a vibrationally hot final state. The results demonstrate the significant impact of the iron oxidation state on the frontier electronic structure and highlights the differences between the emerging class of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{III}}}$$\end{document}FeIII photosensitizers from those of more traditional \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Fe}^{{\rm{II}}}$$\end{document}FeII complexes.
Collapse
Affiliation(s)
- Robert H Temperton
- MAX IV Laboratory, Lund University, Box 118, 221 00, Lund, Sweden.,School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.,Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden
| | - Meiyuan Guo
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Giulio D'Acunto
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Niclas Johansson
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Nils W Rosemann
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Om Prakash
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Box 124, 221 00, Lund, Sweden
| | - Kenneth Wärnmark
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Box 124, 221 00, Lund, Sweden
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, Box 118, 221 00, Lund, Sweden. .,Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden.
| | - Jens Uhlig
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Petter Persson
- Lund Institute of Advanced Neutron and X-ray Science, IDEON Building: Delta 5, Scheelevägen 19, 223 70, Lund, Sweden. .,Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
5
|
Dardenne K, Duckworth S, Gaona X, Polly R, Schimmelpfennig B, Pruessmann T, Rothe J, Altmaier M, Geckeis H. A Combined Study of Tc Redox Speciation in Complex Aqueous Systems: Wet-Chemistry, Tc K-/L 3-Edge X-ray Absorption Fine Structure, and Ab Initio Calculations. Inorg Chem 2021; 60:12285-12298. [PMID: 34328309 DOI: 10.1021/acs.inorgchem.1c01487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of wet-chemistry experiments (measurements of pH, Eh, and [Tc]) and advanced spectroscopic techniques (K- and L3-edge X-ray absorption fine structure spectroscopy) confirms the formation of a very stable Tc(V)-gluconate complex under anoxic conditions. In the presence of gluconate and an excess of Sn(II) (at pe + pH ≈ 2), technetium forms a very stable Tc(IV)-gluconate complex significantly enhancing the solubility defined by TcO2(s) in hyperalkaline gluconate-free systems. A new setup for "tender" X-ray spectroscopy (spectral range, ∼2-5 keV) in transmission or total fluorescence yield detection mode based on a He flow cell has been developed at the INE Beamline for radionuclide science (KIT light source). This setup allows handling of radioactive specimens with total activities up to one million times the exemption limit. For the first time, Tc L3-edge measurements (∼2.677 keV) of Tc species in liquid (aqueous) media are reported, clearly outperforming conventional K-edge spectroscopy as a tool to differentiate Tc oxidation states and coordination environments. The coupling of L3-edge X-ray absorption near-edge spectroscopy measurements and relativistic multireference ab initio methods opens new perspectives in the definition of chemical and thermodynamic models for systems of relevance in the context of nuclear waste disposal, environmental, and pharmaceutical applications.
Collapse
Affiliation(s)
- Kathy Dardenne
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Sarah Duckworth
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Xavier Gaona
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Robert Polly
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Bernd Schimmelpfennig
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Tim Pruessmann
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Jörg Rothe
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Marcus Altmaier
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Horst Geckeis
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe, Germany
| |
Collapse
|
6
|
Halbert L, Vidal ML, Shee A, Coriani S, Severo Pereira Gomes A. Relativistic EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-Component Dirac-Coulomb(-Gaunt) Hamiltonian. J Chem Theory Comput 2021; 17:3583-3598. [PMID: 33944570 DOI: 10.1021/acs.jctc.0c01203] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report an implementation of the core-valence separation approach to the four-component relativistic Hamiltonian-based equation-of-motion coupled-cluster with singles and doubles theory (CVS-EOM-CCSD) for the calculation of relativistic core-ionization potentials and core-excitation energies. With this implementation, which is capable of exploiting double group symmetry, we investigate the effects of the different CVS-EOM-CCSD variants and the use of different Hamiltonians based on the exact two-component (X2C) framework on the energies of different core-ionized and -excited states in halogen- (CH3I, HX, and X-, X = Cl-At) and xenon-containing (Xe, XeF2) species. Our results show that the X2C molecular mean-field approach [Sikkema, J.; J. Chem. Phys. 2009, 131, 124116], based on four-component Dirac-Coulomb mean-field calculations (2DCM), is capable of providing core excitations and ionization energies that are nearly indistinguishable from the reference four-component energies for up to and including fifth-row elements. We observe that two-electron integrals over the small-component basis sets lead to non-negligible contributions to core binding energies for the K and L edges for atoms such as iodine or astatine and that the approach based on Dirac-Coulomb-Gaunt mean-field calculations (2DCGM) are significantly more accurate than X2C calculations for which screened two-electron spin-orbit interactions are included via atomic mean-field integrals.
Collapse
Affiliation(s)
- Loïc Halbert
- CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, Université de Lille, F-59000 Lille, France
| | - Marta L Vidal
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sonia Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - André Severo Pereira Gomes
- CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, Université de Lille, F-59000 Lille, France
| |
Collapse
|
7
|
Rott F, Reduzzi M, Schnappinger T, Kobayashi Y, Chang KF, Timmers H, Neumark DM, de Vivie-Riedle R, Leone SR. Ultrafast strong-field dissociation of vinyl bromide: An attosecond transient absorption spectroscopy and non-adiabatic molecular dynamics study. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034104. [PMID: 34169117 PMCID: PMC8208825 DOI: 10.1063/4.0000102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Attosecond extreme ultraviolet (XUV) and soft x-ray sources provide powerful new tools for studying ultrafast molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy (ATAS) to follow strong-field-initiated dynamics in vinyl bromide. Probing the Br M edge allows one to assess the competing processes in neutral and ionized molecular species. Using ab initio non-adiabatic molecular dynamics, we simulate the neutral and cationic dynamics resulting from the interaction of the molecule with the strong field. Based on the dynamics results, the corresponding time-dependent XUV transient absorption spectra are calculated by applying high-level multi-reference methods. The state-resolved analysis obtained through the simulated dynamics and related spectral contributions enables a detailed and quantitative comparison with the experimental data. The main outcome of the interaction with the strong field is unambiguously the population of the first three cationic states, D 1, D 2, and D 3. The first two show exclusively vibrational dynamics while the D 3 state is characterized by an ultrafast dissociation of the molecule via C-Br bond rupture within 100 fs in 50% of the analyzed trajectories. The combination of the three simulated ionic transient absorption spectra is in excellent agreement with the experimental results. This work establishes ATAS in combination with high-level multi-reference simulations as a spectroscopic technique capable of resolving coupled non-adiabatic electronic-nuclear dynamics in photoexcited molecules with sub-femtosecond resolution.
Collapse
Affiliation(s)
- Florian Rott
- Department of Chemistry, LMU Munich, 81377 Munich, Germany
| | - Maurizio Reduzzi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Kristina F. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Henry Timmers
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
8
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
9
|
Rankine CD, Penfold TJ. Progress in the Theory of X-ray Spectroscopy: From Quantum Chemistry to Machine Learning and Ultrafast Dynamics. J Phys Chem A 2021; 125:4276-4293. [DOI: 10.1021/acs.jpca.0c11267] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- C. D. Rankine
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - T. J. Penfold
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
10
|
Wang H, Odelius M, Prendergast D. A combined multi-reference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation. J Chem Phys 2019; 151:124106. [PMID: 31575206 DOI: 10.1063/1.5116816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UV pump-XUV/X-ray probe measurements have been successfully applied in the study of photo-induced chemical reactions. Although rich element-specific electronic structure information is accessible within XUV/X-ray (inner-shell) absorption spectra, it can be difficult to interpret the chemistry directly from the spectrum without supporting theoretical simulations. A multireference method to completely simulate UV pump-XUV/X-ray probe measurement has been developed and applied to study the methyl iodide photodissociation process. Multireference, fewest-switches surface hopping (FSSH) trajectories were used to explore the coupled electronic and ionic dynamics upon photoexcitation of methyl iodide. Interpretation of previous measurements is provided by associated multireference, restricted active space, inner-shell spectral simulations. This combination of multireference FSSH trajectories and XUV spectra provides an interpretation of transient features appearing in previous measurements within the first 100 fs after photoexcitation and validates the significant branching ratio in the final excited-state population. This methodology should prove useful for interpretation of the increasing number of inner-shell probe studies of molecular excited states or for directing new experiments toward interesting regions of the potential energy landscape.
Collapse
Affiliation(s)
- Han Wang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - David Prendergast
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|