1
|
Coverdale JPC, Polepalli S, Arruda MAZ, da Silva ABS, Stewart AJ, Blindauer CA. Recent Advances in Metalloproteomics. Biomolecules 2024; 14:104. [PMID: 38254704 PMCID: PMC10813065 DOI: 10.3390/biom14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Interactions between proteins and metal ions and their complexes are important in many areas of the life sciences, including physiology, medicine, and toxicology. Despite the involvement of essential elements in all major processes necessary for sustaining life, metalloproteomes remain ill-defined. This is not only owing to the complexity of metalloproteomes, but also to the non-covalent character of the complexes that most essential metals form, which complicates analysis. Similar issues may also be encountered for some toxic metals. The review discusses recently developed approaches and current challenges for the study of interactions involving entire (sub-)proteomes with such labile metal ions. In the second part, transition metals from the fourth and fifth periods are examined, most of which are xenobiotic and also tend to form more stable and/or inert complexes. A large research area in this respect concerns metallodrug-protein interactions. Particular attention is paid to separation approaches, as these need to be adapted to the reactivity of the metal under consideration.
Collapse
Affiliation(s)
- James P. C. Coverdale
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston B15 2TT, UK;
| | | | - Marco A. Z. Arruda
- Institute of Chemistry, Department of Analytical Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; (M.A.Z.A.); (A.B.S.d.S.)
| | - Ana B. Santos da Silva
- Institute of Chemistry, Department of Analytical Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; (M.A.Z.A.); (A.B.S.d.S.)
| | - Alan J. Stewart
- School of Medicine, University of St. Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
2
|
Bertić M, Zimmer I, Andrés-Montaner D, Rosenkranz M, Kangasjärvi J, Schnitzler JP, Ghirardo A. Automatization of metabolite extraction for high-throughput metabolomics: case study on transgenic isoprene-emitting birch. TREE PHYSIOLOGY 2023; 43:1855-1869. [PMID: 37418159 DOI: 10.1093/treephys/tpad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Metabolomics studies are becoming increasingly common for understanding how plant metabolism responds to changes in environmental conditions, genetic manipulations and treatments. Despite the recent advances in metabolomics workflow, the sample preparation process still limits the high-throughput analysis in large-scale studies. Here, we present a highly flexible robotic system that integrates liquid handling, sonication, centrifugation, solvent evaporation and sample transfer processed in 96-well plates to automatize the metabolite extraction from leaf samples. We transferred an established manual extraction protocol performed to a robotic system, and with this, we show the optimization steps required to improve reproducibility and obtain comparable results in terms of extraction efficiency and accuracy. We then tested the robotic system to analyze the metabolomes of wild-type and four transgenic silver birch (Betula pendula Roth) lines under unstressed conditions. Birch trees were engineered to overexpress the poplar (Populus × canescens) isoprene synthase and to emit various amounts of isoprene. By fitting the different isoprene emission capacities of the transgenic trees with their leaf metabolomes, we observed an isoprene-dependent upregulation of some flavonoids and other secondary metabolites as well as carbohydrates, amino acid and lipid metabolites. By contrast, the disaccharide sucrose was found to be strongly negatively correlated to isoprene emission. The presented study illustrates the power of integrating robotics to increase the sample throughput, reduce human errors and labor time, and to ensure a fully controlled, monitored and standardized sample preparation procedure. Due to its modular and flexible structure, the robotic system can be easily adapted to other extraction protocols for the analysis of various tissues or plant species to achieve high-throughput metabolomics in plant research.
Collapse
Affiliation(s)
- Marko Bertić
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Ina Zimmer
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - David Andrés-Montaner
- Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, Garmisch-Partenkirchen 82467, Germany
- Corteva Agriscience Spain S.L.U, Carreño, Spain
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg 93053, Germany
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, P.O Box 65, FI-00014, Finland
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
3
|
de Jesus JR, Arruda MAZ. Unravelling neurological disorders through metallomics-based approaches. Metallomics 2020; 12:1878-1896. [PMID: 33237082 DOI: 10.1039/d0mt00234h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the biological process involving metals and biomolecules in the brain is essential for establishing the origin of neurological disorders, such as neurodegenerative and psychiatric diseases. From this perspective, this critical review presents recent advances in this topic, showing possible mechanisms involving the disruption of metal homeostasis and the pathogenesis of neurological disorders. We also discuss the main challenges observed in metallomics studies associated with neurological disorders, including those related to sample preparation and analyte quantification.
Collapse
|
4
|
Speciation of chromium in waters using dispersive micro-solid phase extraction with magnetic ferrite and graphite furnace atomic absorption spectrometry. Sci Rep 2020; 10:5268. [PMID: 32210320 PMCID: PMC7093401 DOI: 10.1038/s41598-020-62212-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
The combination of a solid-phase microextraction process with graphite furnace atomic absorption spectrometry provides a very sensitive determination method for determining chromium in waters. Freshly prepared ferrite particles are used to retain the chromium species, and then separated by a magnet without the need for a centrifugation step. The solid phase is suspended in water and directly introduced into the graphite furnace to obtain the analytical signal. The complexation of Cr(III) with ethylenediaminetetraacetate allows the selective retention of Cr(VI), and thus the speciation of the metal. The procedure is sensitive (0.01 µg L−1 detection limit when using a 10 mL sample aliquot) and reproducible (5% relative standard deviation for five consecutive experiments at the 0.3 µg L−1 level). The reliability of the procedure is verified by analysing five certified water samples.
Collapse
|