Guse AH, Gil Montoya DC, Diercks BP. Mechanisms and functions of calcium microdomains produced by ORAI channels, d-myo-inositol 1,4,5-trisphosphate receptors, or ryanodine receptors.
Pharmacol Ther 2021;
223:107804. [PMID:
33465399 DOI:
10.1016/j.pharmthera.2021.107804]
[Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
With the discovery of local Ca2+ signals in the 1990s the concept of 'elementary Ca2+ signals' and 'fundamental Ca2+ signals' was developed. While 'elementary Ca2+signals' relate to optical signals gained by activity of small clusters of Ca2+channels, 'fundamental signals' describe such optical signals that arise from opening of single Ca2+channels. In this review, we discuss (i) concepts of local Ca2+ signals and Ca2+ microdomains, (ii) molecular mechanisms underlying Ca2+ microdomains, (iii) functions of Ca2+ microdomains, and (iv) mathematical modelling of Ca2+ microdomains. We focus on Ca2+ microdomains produced by ORAI channels, D-myo-inositol 1,4,5-trisphosphate receptors, or ryanodine receptors. In summary, research on local Ca2+ signals in different cell models aims to better understand how cells use the Ca2+ toolkit to produce Ca2+ microdomains as relevant signals for specific cellular responses, but also how local Ca2+ signals as building blocks merge into global Ca2+ signaling.
Collapse