1
|
Li X, Zhang Y, Guo S, Dai R. RSM optimization of fermentation technology of yellow wine produced from Millets rice (containing Daylily and Agaricus blazei Murr) and analysis of volatile aroma constituents and amino acid contents by GC-MS and HPLC. Food Chem X 2024; 23:101567. [PMID: 39669897 PMCID: PMC11637178 DOI: 10.1016/j.fochx.2024.101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 12/14/2024] Open
Abstract
The fermentation process was carried out with varied input variables, and all the models showed significant p-values for interaction of variance (<0.05). Millet rice yellow wine with ethanol yield of 15.68%, v/v was produced at an optimized temperature of 32 °C, yeast addition quantity of 9%, and time of 41 days. The volatile compounds in millet rice wine were analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Amino acid components in yellow wines were analyzed by high performance liquid chromatography (HPLC). Ten, twelve and sixteen volatile compounds were detected in wines in fermentation time of 41, 55 and 70 days, respectively. HPLC shows that the content of amino acids in rice wine is not only the highest, but also has 20 kinds, including 8 kinds of essential amino acids for human body. The difference in volatile components and amino acids composition greatly contribute to the flavor of the wine.
Collapse
Affiliation(s)
- XinMing Li
- Shanxi institute for Functional Food, Shanxi Agricultural University, Taiyuan City, 030000, Shanxi Province, China
| | - YaJun Zhang
- Shanxi institute for Functional Food, Shanxi Agricultural University, Taiyuan City, 030000, Shanxi Province, China
| | - Shang Guo
- Shanxi institute for Functional Food, Shanxi Agricultural University, Taiyuan City, 030000, Shanxi Province, China
| | - RunFang Dai
- Shanxi Provincial Agricultural Product Quality and Safety Center, Taiyuan city, 030006, Shangxi Province, China
| |
Collapse
|
2
|
Ting TY, Li Y, Bunawan H, Ramzi AB, Goh HH. Current advancements in systems and synthetic biology studies of Saccharomyces cerevisiae. J Biosci Bioeng 2023; 135:259-265. [PMID: 36803862 DOI: 10.1016/j.jbiosc.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Saccharomyces cerevisiae has a long-standing history of biotechnological applications even before the dawn of modern biotechnology. The field is undergoing accelerated advancement with the recent systems and synthetic biology approaches. In this review, we highlight the recent findings in the field with a focus on omics studies of S. cerevisiae to investigate its stress tolerance in different industries. The latest advancements in S. cerevisiae systems and synthetic biology approaches for the development of genome-scale metabolic models (GEMs) and molecular tools such as multiplex Cas9, Cas12a, Cpf1, and Csy4 genome editing tools, modular expression cassette with optimal transcription factors, promoters, and terminator libraries as well as metabolic engineering. Omics data analysis is key to the identification of exploitable native genes/proteins/pathways in S. cerevisiae with the optimization of heterologous pathway implementation and fermentation conditions. Through systems and synthetic biology, various heterologous compound productions that require non-native biosynthetic pathways in a cell factory have been established via different strategies of metabolic engineering integrated with machine learning.
Collapse
Affiliation(s)
- Tiew-Yik Ting
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - YaDong Li
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Cristina Vergara Alvarez S, José Leiva Alaniz M, Victoria Mestre Furlani M, Vazquez F, Mancha Agresti P, Cristina Nally M, Paola Maturano Y. Bioprospecting of the probiotic potential of yeasts isolated from a wine environment. Fungal Genet Biol 2023; 164:103767. [PMID: 36529368 DOI: 10.1016/j.fgb.2022.103767] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Autochthonous yeasts of oenological origin are adapted to highly stressful and selective environments, which makes them potential candidates for probiotics. The objective of the present study was to explore the probiotic potential of 96 native yeasts of oenological origin, their biosafety, resistance to gastrointestinal tract conditions and adhesion properties. Regarding biosafety, 66 isolates shown negative hemolytic activity, negative urease activity and susceptibility to 3 or more antifungals. After the gastrointestinal resistance test, 15 isolates were selected that showed growth at different temperatures, tolerance to low pH and the presence of bile salts in in vitro tests. In general, survival after simulated conditions of the gastrointestinal tract was high and more restrictive was the duodenal. The results of the adhesion properties showed highly variable hydrophobicity and a high percentage of autoaggregation at 24 h. The maximum production of biofilm was detected in the Pichia strains. Of a total of 96 yeast strains, 15 non-Saccharomyces yeasts presented suitable properties as probiotic candidates. The native winemaking strains performed better than the reference probiotic strain, Saccharomyces cerevisiae var. boulardii CNCM I-745, which reaffirms that these strains are promising probiotic candidates and further studies are necessary to confirm their probiosis.
Collapse
Affiliation(s)
- Silvia Cristina Vergara Alvarez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires C1425FQB, Argentina.
| | - María José Leiva Alaniz
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires C1425FQB, Argentina.
| | - María Victoria Mestre Furlani
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - Pamela Mancha Agresti
- CEFET Centro Federal de Educação Tecnológica, Av. Amazonas, 5253 Belo Horizonte, Mina Gerais 30421-169, Brasil
| | - María Cristina Nally
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
4
|
García-Ríos E, Guillamón JM. Genomic Adaptations of Saccharomyces Genus to Wine Niche. Microorganisms 2022; 10:microorganisms10091811. [PMID: 36144411 PMCID: PMC9500811 DOI: 10.3390/microorganisms10091811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Wine yeast have been exposed to harsh conditions for millennia, which have led to adaptive evolutionary strategies. Thus, wine yeasts from Saccharomyces genus are considered an interesting and highly valuable model to study human-drive domestication processes. The rise of whole-genome sequencing technologies together with new long reads platforms has provided new understanding about the population structure and the evolution of wine yeasts. Population genomics studies have indicated domestication fingerprints in wine yeast, including nucleotide variations, chromosomal rearrangements, horizontal gene transfer or hybridization, among others. These genetic changes contribute to genetically and phenotypically distinct strains. This review will summarize and discuss recent research on evolutionary trajectories of wine yeasts, highlighting the domestication hallmarks identified in this group of yeast.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
- Department of Science, Universidad Internacional de Valencia-VIU, Pintor Sorolla 21, 46002 Valencia, Spain
- Correspondence:
| | - José Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
| |
Collapse
|
5
|
Gronchi N, De Bernardini N, Cripwell RA, Treu L, Campanaro S, Basaglia M, Foulquié-Moreno MR, Thevelein JM, Van Zyl WH, Favaro L, Casella S. Natural Saccharomyces cerevisiae Strain Reveals Peculiar Genomic Traits for Starch-to-Bioethanol Production: the Design of an Amylolytic Consolidated Bioprocessing Yeast. Front Microbiol 2022; 12:768562. [PMID: 35126325 PMCID: PMC8815085 DOI: 10.3389/fmicb.2021.768562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Natural yeast with superior fermentative traits can serve as a platform for the development of recombinant strains that can be used to improve the sustainability of bioethanol production from starch. This process will benefit from a consolidated bioprocessing (CBP) approach where an engineered strain producing amylases directly converts starch into ethanol. The yeast Saccharomyces cerevisiae L20, previously selected as outperforming the benchmark yeast Ethanol Red, was here subjected to a comparative genomic investigation using a dataset of industrial S. cerevisiae strains. Along with Ethanol Red, strain L20 was then engineered for the expression of α-amylase amyA and glucoamylase glaA genes from Aspergillus tubingensis by employing two different approaches (delta integration and CRISPR/Cas9). A correlation between the number of integrated copies and the hydrolytic abilities of the recombinants was investigated. L20 demonstrated important traits for the construction of a proficient CBP yeast. Despite showing a close relatedness to commercial wine yeast and the benchmark Ethanol Red, a unique profile of gene copy number variations (CNVs) was found in L20, mainly encoding membrane transporters and secretion pathway proteins but also the fermentative metabolism. Moreover, the genome annotation disclosed seven open reading frames (ORFs) in L20 that are absent in the reference S288C genome. Genome engineering was successfully implemented for amylase production. However, with equal amylase gene copies, L20 proved its proficiency as a good enzyme secretor by exhibiting a markedly higher amylolytic activity than Ethanol Red, in compliance to the findings of the genomic exploration. The recombinant L20 dT8 exhibited the highest amylolytic activity and produced more than 4 g/L of ethanol from 2% starch in a CBP setting without the addition of supplementary enzymes. Based on the performance of this strain, an amylase/glucoamylase ratio of 1:2.5 was suggested as baseline for further improvement of the CBP ability. Overall, L20 showed important traits for the future construction of a proficient CBP yeast. As such, this work shows that natural S. cerevisiae strains can be used for the expression of foreign secreted enzymes, paving the way to strain improvement for the starch-to-bioethanol route.
Collapse
Affiliation(s)
- Nicoletta Gronchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | | | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Laura Treu
- Department of Biology, University of Padua, Padua, Italy
| | | | - Marina Basaglia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | | | - Johan M Thevelein
- Department of Molecular Microbiology, VIB, KU Leuven, Leuven, Belgium
- NovelYeast Bv, Open Bio-Incubator, Erasmus High School, Jette, Belgium
| | - Willem H Van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Lorenzo Favaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Sergio Casella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| |
Collapse
|
6
|
Sunyer-Figueres M, Mas A, Beltran G, Torija MJ. Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress. Antioxidants (Basel) 2021; 10:antiox10111735. [PMID: 34829606 PMCID: PMC8615028 DOI: 10.3390/antiox10111735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae is subjected to several stresses, among which ethanol is of capital importance. Melatonin, a bioactive molecule synthesized by yeast during alcoholic fermentation, has an antioxidant role and is proposed to contribute to counteracting fermentation-associated stresses. The aim of this study was to unravel the protective effect of melatonin on yeast cells subjected to ethanol stress. For that purpose, the effect of ethanol concentrations (6 to 12%) on a wine strain and a lab strain of S. cerevisiae was evaluated, monitoring the viability, growth capacity, mortality, and several indicators of oxidative stress over time, such as reactive oxygen species (ROS) accumulation, lipid peroxidation, and the activity of catalase and superoxide dismutase enzymes. In general, ethanol exposure reduced the cell growth of S. cerevisiae and increased mortality, ROS accumulation, lipid peroxidation and antioxidant enzyme activity. Melatonin supplementation softened the effect of ethanol, enhancing cell growth and decreasing oxidative damage by lowering ROS accumulation, lipid peroxidation, and antioxidant enzyme activities. However, the effects of melatonin were dependent on strain, melatonin concentration, and growth phase. The results of this study indicate that melatonin has a protective role against mild ethanol stress, mainly by reducing the oxidative stress triggered by this alcohol.
Collapse
|
7
|
Mechanisms of Metabolic Adaptation in Wine Yeasts: Role of Gln3 Transcription Factor. FERMENTATION 2021. [DOI: 10.3390/fermentation7030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wine strains of Saccharomyces cerevisiae have to adapt their metabolism to the changing conditions during their biotechnological use, from the aerobic growth in sucrose-rich molasses for biomass propagation to the anaerobic fermentation of monosaccharides of grape juice during winemaking. Yeast have molecular mechanisms that favor the use of preferred carbon and nitrogen sources to achieve such adaptation. By using specific inhibitors, it was determined that commercial strains offer a wide variety of glucose repression profiles. Transcription factor Gln3 has been involved in glucose and nitrogen repression. Deletion of GLN3 in two commercial wine strains produced different mutant phenotypes and only one of them displayed higher glucose repression and was unable to grow using a respiratory carbon source. Therefore, the role of this transcription factor contributes to the variety of phenotypic behaviors seen in wine strains. This variability is also reflected in the impact of GLN3 deletion in fermentation, although the mutants are always more tolerant to inhibition of the nutrient signaling complex TORC1 by rapamycin, both in laboratory medium and in grape juice fermentation. Therefore, most aspects of nitrogen catabolite repression controlled by TORC1 are conserved in winemaking conditions.
Collapse
|
8
|
Ruiz J, de Celis M, Martín-Santamaría M, Benito-Vázquez I, Pontes A, Lanza VF, Sampaio JP, Santos A, Belda I. Global distribution of IRC7 alleles in Saccharomyces cerevisiae populations: a genomic and phenotypic survey within the wine clade. Environ Microbiol 2021; 23:3182-3195. [PMID: 33973343 DOI: 10.1111/1462-2920.15540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
The adaptation to the different biotic and abiotic factors of wine fermentation has led to the accumulation of numerous genomic hallmarks in Saccharomyces cerevisiae wine strains. IRC7, a gene encoding a cysteine-S-β-lyase enzyme related volatile thiols production in wines, has two alleles: a full-length allele (IRC7F ) and a mutated one (IRC7S ), harbouring a 38 bp-deletion. Interestingly, IRC7S -encoding a less active enzyme - appears widespread amongst wine populations. Studying the global distribution of the IRC7S allele in different yeast lineages, we confirmed its high prevalence in the Wine clade and demonstrated a minority presence in other domesticated clades (Wine-PDM, Beer and Bread) while it is completely missing in wild clades. Here, we show that IRC7S -homozygous (HS) strains exhibited both fitness and competitive advantages compared with IRC7F -homozygous (HF) strains. There are some pieces of evidence of the direct contribution of the IRC7S allele to the outstanding behaviour of HS strains (i.e., improved response to oxidative stress conditions and higher tolerance to high copper levels); however, we also identified a set of sequence variants with significant co-occurrence patterns with the IRC7S allele, which can be co-contributing to the fitness and competitive advantages of HS strains in wine fermentations.
Collapse
Affiliation(s)
- Javier Ruiz
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Miguel de Celis
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - María Martín-Santamaría
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Iván Benito-Vázquez
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Ana Pontes
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Val F Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, 28034, Spain
| | - José Paulo Sampaio
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
9
|
Garrigós V, Picazo C, Matallana E, Aranda A. Wine yeast peroxiredoxin TSA1 plays a role in growth, stress response and trehalose metabolism in biomass propagation. Microorganisms 2020; 8:microorganisms8101537. [PMID: 33036195 PMCID: PMC7600145 DOI: 10.3390/microorganisms8101537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/22/2022] Open
Abstract
Peroxiredoxins are a family of peroxide-degrading enzymes for challenging oxidative stress. They receive their reducing power from redox-controlling proteins called thioredoxins, and these, in turn, from thioredoxin reductase. The main cytosolic peroxiredoxin is Tsa1, a moonlighting protein that also acts as protein chaperone a redox switch controlling some metabolic events. Gene deletion of peroxiredoxins in wine yeasts indicate that TSA1, thioredoxins and thioredoxin reductase TRR1 are required for normal growth in medium with glucose and sucrose as carbon sources. TSA1 gene deletion also diminishes growth in molasses, both in flasks and bioreactors. The TSA1 mutation brings about an expected change in redox parameters but, interestingly, it also triggers a variety of metabolic changes. It influences trehalose accumulation, lowering it in first molasses growth stages, but increasing it at the end of batch growth, when respiratory metabolism is set up. Glycogen accumulation at the entry of the stationary phase also increases in the tsa1Δ mutant. The mutation reduces fermentative capacity in grape juice, but the vinification profile does not significantly change. However, acetic acid and acetaldehyde production decrease when TSA1 is absent. Hence, TSA1 plays a role in the regulation of metabolic reactions leading to the production of such relevant enological molecules.
Collapse
Affiliation(s)
- Víctor Garrigós
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, 7, 46980 Paterna, Spain; (V.G.); (C.P.); (E.M.)
| | - Cecilia Picazo
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, 7, 46980 Paterna, Spain; (V.G.); (C.P.); (E.M.)
- Department of Biology and Biological Engineering, Chalmers University, S-41296 Gothenburg, Sweden
| | - Emilia Matallana
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, 7, 46980 Paterna, Spain; (V.G.); (C.P.); (E.M.)
| | - Agustín Aranda
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, 7, 46980 Paterna, Spain; (V.G.); (C.P.); (E.M.)
- Correspondence:
| |
Collapse
|
10
|
Mardanov AV, Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV. Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Front Microbiol 2020; 11:538. [PMID: 32308650 PMCID: PMC7145950 DOI: 10.3389/fmicb.2020.00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Flor strains of Saccharomyces cerevisiae are principal microbial agents responsible for biological wine aging used for production of sherry-like wines. The flor yeast velum formed on the surface of fortified fermented must is a major adaptive and technological characteristic of flor yeasts that helps them to withstanding stressful winemaking conditions and ensures specific biochemical and sensory oxidative alterations typical for sherry wines. We have applied RNAseq technology for transcriptome analysis of an industrial flor yeast strain at different steps of velum development over 71 days under experimental winemaking conditions. Velum growth and maturation was accompanied by accumulation of aldehydes and acetales. We have identified 1490 differentially expressed genes including 816 genes upregulated and 674 downregulated more than 2-fold at mature biofilm stage as compared to the early biofilm. Distinct expression patterns of genes involved in carbon and nitrogen metabolism, respiration, cell cycle, DNA repair, cell adhesion, response to various stresses were observed. Many genes involved in response to different stresses, oxidative carbon metabolism, high affinity transport of sugars, glycerol utilization, sulfur metabolism, protein quality control and recycling, cell wall biogenesis, apoptosis were induced at the mature biofilm stage. Strong upregulation was observed for FLO11 flocculin while expression of other flocculins remained unaltered or moderately downregulated. Downregulated genes included those for proteins involved in glycolysis, transportation of ions, metals, aminoacids, sugars, indicating repression of some major transport and metabolic process at the mature biofilm stage. Presented results are important for in-depth understanding of cell response elicited by velum formation and sherry wine manufacturing conditions, and for the comprehension of relevant regulatory mechanisms. Such knowledge may help to better understand the molecular mechanisms that flor yeasts use to adapt to winemaking environments, establish the functions of previously uncharacterized genes, improve the technology of sherry- wine production, and find target genes for strain improvement.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Tanashchuk
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A Kishkovskaya
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Kessi-Pérez EI, Molinet J, Martínez C. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation. Biol Res 2020; 53:2. [PMID: 31918759 PMCID: PMC6950849 DOI: 10.1186/s40659-019-0270-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been considered for more than 20 years as a premier model organism for biological sciences, also being the main microorganism used in wide industrial applications, like alcoholic fermentation in the winemaking process. Grape juice is a challenging environment for S. cerevisiae, with nitrogen deficiencies impairing fermentation rate and yeast biomass production, causing stuck or sluggish fermentations, thus generating sizeable economic losses for wine industry. In the present review, we summarize some recent efforts in the search of causative genes that account for yeast adaptation to low nitrogen environments, specially focused in wine fermentation conditions. We start presenting a brief perspective of yeast nitrogen utilization under wine fermentative conditions, highlighting yeast preference for some nitrogen sources above others. Then, we give an outlook of S. cerevisiae genetic diversity studies, paying special attention to efforts in genome sequencing for population structure determination and presenting QTL mapping as a powerful tool for phenotype-genotype correlations. Finally, we do a recapitulation of S. cerevisiae natural diversity related to low nitrogen adaptation, specially showing how different studies have left in evidence the central role of the TORC1 signalling pathway in nitrogen utilization and positioned wild S. cerevisiae strains as a reservoir of beneficial alleles with potential industrial applications (e.g. improvement of industrial yeasts for wine production). More studies focused in disentangling the genetic bases of S. cerevisiae adaptation in wine fermentation will be key to determine the domestication effects over low nitrogen adaptation, as well as to definitely proof that wild S. cerevisiae strains have potential genetic determinants for better adaptation to low nitrogen conditions.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|