1
|
Kang T, Zhou Y, Fan C, Zhang Y, Yang Y, Jiang J. Genetic association of lipid traits and lipid-related drug targets with normal tension glaucoma: a Mendelian randomization study for predictive preventive and personalized medicine. EPMA J 2024; 15:511-524. [PMID: 39239107 PMCID: PMC11371969 DOI: 10.1007/s13167-024-00373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024]
Abstract
Background Glaucoma is the leading cause of irreversible blindness worldwide. Normal tension glaucoma (NTG) is a distinct subtype characterized by intraocular pressures (IOP) within the normal range (< 21 mm Hg). Due to its insidious onset and optic nerve damage, patients often present with advanced conditions upon diagnosis. NTG poses an additional challenge as it is difficult to identify with normal IOP, complicating its prediction, prevention, and treatment. Observational studies suggest a potential association between NTG and abnormal lipid metabolism, yet conclusive evidence establishing a direct causal relationship is lacking. This study aims to explore the causal link between serum lipids and NTG, while identifying lipid-related therapeutic targets. From the perspective of predictive, preventive, and personalized medicine (PPPM), clarifying the role of dyslipidemia in the development of NTG could provide a new strategy for primary prediction, targeted prevention, and personalized treatment of the disease. Working hypothesis and methods In our study, we hypothesized that individuals with dyslipidemia may be more susceptible to NTG due to a dysregulation of microvasculature in optic nerve head. To verify the working hypothesis, univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) were utilized to estimate the causal effects of lipid traits on NTG. Drug target MR was used to explore possible target genes for NTG treatment. Genetic variants associated with lipid traits and variants of genes encoding seven lipid-related drug targets were extracted from the Global Lipids Genetics Consortium genome-wide association study (GWAS). GWAS data for NTG, primary open angle glaucoma (POAG), and suspected glaucoma (GLAUSUSP) were obtained from FinnGen Consortium. For apolipoproteins, we used summary statistics from a GWAS study by Kettunen et al. in 2016. For metabolic syndrome, summary statistics were extracted from UK Biobank participants. In the end, these findings could help identify individuals at risk of NTG by screening for lipid dyslipidemia, potentially leading to new targeted prevention and personalized treatment approaches. Results Genetically assessed high-density cholesterol (HDL) was negatively associated with NTG risk (inverse-variance weighted [IVW] model: OR per SD change of HDL level = 0.64; 95% CI, 0.49-0.85; P = 1.84 × 10-3), and the causal effect was independent of apolipoproteins and metabolic syndrome (IVW model: OR = 0.29; 95% CI, 0.14-0.60; P = 0.001 adjusted by ApoB and ApoA1; OR = 0.70; 95% CI, 0.52-0.95; P = 0.023 adjusted by BMI, HTN, and T2DM). Triglyceride (TG) was positively associated with NTG risk (IVW model: OR = 1.62; 95% CI, 1.15-2.29; P = 6.31 × 10-3), and the causal effect was independent of metabolic syndrome (IVW model: OR = 1.66; 95% CI, 1.18-2.34; P = 0.003 adjusted by BMI, HTN, and T2DM), but not apolipoproteins (IVW model: OR = 1.71; 95% CI, 0.99-2.95; P = 0.050 adjusted by ApoB and ApoA1). Genetic mimicry of apolipoprotein B (APOB) enhancement was associated with lower NTG risks (IVW model: OR = 0.09; 95% CI, 0.03-0.26; P = 9.32 × 10-6). Conclusions Our findings supported dyslipidemia as a predictive causal factor for NTG, independent of other factors such as metabolic comorbidities. Among seven lipid-related drug targets, APOB is a potential candidate drug target for preventing NTG. Personalized health profiles can be developed by integrating lipid metabolism with life styles, visual quality of life such as reading, driving, and walking. This comprehensive approach will aid in shifting from reactive medical services to PPPM in the management of NTG. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00373-5.
Collapse
Affiliation(s)
- Tianyi Kang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yue Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yu Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
2
|
Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1057896. [PMID: 36866233 PMCID: PMC9976697 DOI: 10.3389/fopht.2022.1057896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 04/16/2023]
Abstract
Artificial intelligence (AI) has been approved for biomedical research in diverse areas from bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data available and the introduction of federated learning. Conversely, AI for basic science remains limited despite its useful power in providing mechanistic insight. In this perspective, we discuss recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific discoveries. Specifically, we focus on the research paradigm of reverse translation, in which clinical data are first used for patient-centered hypothesis generation followed by transitioning into basic science studies for hypothesis validation. We elaborate on several distinctive areas of research opportunities for reverse translation of AI in glaucoma including disease risk and progression prediction, pathology characterization, and sub-phenotype identification. We conclude with current challenges and future opportunities for AI research in basic science for glaucoma such as inter-species diversity, AI model generalizability and explainability, as well as AI applications using advanced ocular imaging and genomic data.
Collapse
Affiliation(s)
- Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rebecca M. Sappington
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin C. Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
3
|
Gerner C, Costigliola V, Golubnitschaja O. MULTIOMIC PATTERNS IN BODY FLUIDS: TECHNOLOGICAL CHALLENGE WITH A GREAT POTENTIAL TO IMPLEMENT THE ADVANCED PARADIGM OF 3P MEDICINE. MASS SPECTROMETRY REVIEWS 2020; 39:442-451. [PMID: 31737933 DOI: 10.1002/mas.21612] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Liquid biopsy (LB) is defined as a sample of any of body fluids (blood, saliva, tear fluid, urine, sweat, amniotic, cerebrospinal and pleural fluids, cervicovaginal secretion, and wound efflux, amongst others), which can be ex vivo analysed to detect and quantity the target(s) of interest. LB represents diagnostic approach relevant for organ-specific changes and systemic health conditions including both manifested diseases and their prestages such as suboptimal health. Further, experts emphasise that DNA-based analysis alone does not provide sufficient information for optimal diagnostics and effective treatments. Consequently, of great scientific and clinical utility are molecular patterns detected by hybrid technologies such as metabolomic tools and molecular imaging. Future proposed strategies utilise multiomic pillars (generally genome, tanscriptome, proteome, metabolome, epigenome, radiome, and microbiome), system-biological approach, and multivariable algorithms for diagnostic, prognostic, and therapeutic purposes. Current article analyses pros and cons of the mass spectrometry-based technologies, provides eminent examples of a success story "from discovery to clinical application," and demonstrates a "road-map" for the technology-driven paradigm change from reactive to predictive, preventive and personalised medical services as the medicine of the future benefiting the patient and healthcare at large. © 2019 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry and Joint Metabolome Facility, University of Vienna, Vienna, Austria
- European Association for Predictive, Preventive and Personalised Medicine (EPMA), Brussels, Belgium
| | - Vincenzo Costigliola
- European Association for Predictive, Preventive and Personalised Medicine (EPMA), Brussels, Belgium
- European Medical Association (EMA), Brussels, Belgium
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine (EPMA), Brussels, Belgium
- Radiological Clinic, UKB, Excellence Friedrich-Wilhelms-University Bonn, Bonn, Germany
- Breast Cancer Research Centre, UKB, Excellence Friedrich-Wilhelms-University Bonn, Bonn, Germany
- Centre for Integrated Oncology, Cologne-Bonn, Excellence Friedrich-Wilhelms-University Bonn, Bonn, Germany
| |
Collapse
|