1
|
Chan PF, Ang KP, Hamid RA. Cytotoxicity of bismuth(III) dithiocarbamate derivatives by promoting a mitochondrial-dependent apoptotic pathway and suppressing MCF-7 breast adenocarcinoma cell invasion. J Biol Inorg Chem 2024; 29:217-241. [PMID: 38369679 DOI: 10.1007/s00775-023-02041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 02/20/2024]
Abstract
We previously reported that the bismuth(III) dithiocarbamate derivative, bismuth diethyldithiocarbamate (1) exhibited greater cytotoxicity while inducing apoptosis via the intrinsic pathway in MCF-7 cells. We further evaluated the other bismuth(III) dithiocarbamate derivatives, Bi[S2CNR]3, with R = (CH2CH2OH)(iPr), (CH2)4, and (CH2CH2OH)(CH3), denoted as 2, 3, and 4, respectively, in the same MCF-7 cell line. 2-4 were found to exhibit IC50 values of 10.33 ± 0.06 µM, 1.07 ± 0.01 µM and 25.37 ± 0.12 µM, respectively, compared to that of cisplatin at 30.53 ± 0.23 µM. Apoptotic promotion via the mitochondrial-dependent pathway was due to the elevation of intracellular reactive oxygen species (ROS), promotion of caspases, release of cytochrome c, fragmentation of DNA, and results of staining assay observed in all compound-treated cells. 2-4 are also capable of suppressing MCF-7 cell invasion and modulate Lys-48 also Lys-63 linked polyubiquitination, leading to proteasomal degradation. Analysis of gene expression via qRT-PCR revealed their modulation, which supported all activities conducted upon treatment with 2-4. Altogether, bismuth dithiocarbamate derivatives, with bismuth(III) as the metal center bound to ligands, isopropyl ethanol, pyrrolidine, and methyl ethanol dithiocarbamate, are potential anti-breast cancer agents that induce apoptosis and suppress metastasis. Further studies using other breast cancer cell lines and in vivo studies are recommended to clarify the anticancer effects of these compounds.
Collapse
Affiliation(s)
- Pit Foong Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
MYSM1 induces apoptosis and sensitizes TNBC cells to cisplatin via RSK3-phospho-BAD pathway. Cell Death Dis 2022; 8:84. [PMID: 35217648 PMCID: PMC8881619 DOI: 10.1038/s41420-022-00881-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the leading causes of mortality among women. Triple-negative breast cancer (TNBC) is responsible for a large percentage of all breast cancer deaths in women. This study demonstrated the function of Myb-like, SWIRM, and MPN domains 1 (MYSM1), an H2A deubiquitinase (DUB), in TNBC. MYSM1 expression was drastically decreased in breast cancer, especially in TNBC, suggesting a potential anticancer effect. Overexpressing and suppressing MYSM1 expression in TNBC cell lines led to significant biological changes in cell proliferation. Furthermore, MYSM1 overexpression increased cisplatin-induced apoptosis, which might be attributed to RSK3 inactivation and the subsequently decreased phosphorylation of Bcl-2 antagonist of cell death (BAD) (Ser 112). The findings suggest that MYSM1 is a potential target for regulating cell apoptosis and suppressing resistance to cisplatin in TNBC.
Collapse
|
3
|
Marzo T, La Mendola D. The Effects on Angiogenesis of Relevant Inorganic Chemotherapeutics. Curr Top Med Chem 2021; 21:73-86. [PMID: 33243124 DOI: 10.2174/1568026620666201126163436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a key process allowing the formation of blood vessels. It is crucial for all the tissues and organs, ensuring their function and growth. Angiogenesis is finely controlled by several mechanisms involving complex interactions between pro- or antiangiogenic factors, and an imbalance in this control chain may result in pathological conditions. Metals as copper, zinc and iron cover an essential role in regulating angiogenesis, thus therapies having physiological metals as target have been proposed. In addition, some complexes of heavier metal ions (e.g., Pt, Au, Ru) are currently used as established or experimental anticancer agents targeting genomic or non-genomic targets. These molecules may affect the angiogenic mechanisms determining different effects that have been only poorly and non-systematically investigated so far. Accordingly, in this review article, we aim to recapitulate the impact on the angiogenic process of some reference anticancer drugs, and how it is connected to the overall pharmacological effects. In addition, we highlight how the activity of these drugs can be related to the role of biological essential metal ions. Overall, this may allow a deeper description and understanding of the antineoplastic activity of both approved or experimental metal complexes, providing important insights for the synthesis of new inorganic drugs able to overcome resistance and recurrence phenomena.
Collapse
Affiliation(s)
- Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| |
Collapse
|
4
|
Rufino-Felipe E, Colorado-Peralta R, Reyes-Márquez V, Valdés H, Morales-Morales D. Fluorinated-NHC Transition Metal Complexes: Leading Characters as Potential Anticancer Metallodrugs. Anticancer Agents Med Chem 2021; 21:938-948. [PMID: 32900353 DOI: 10.2174/1871520620666200908103452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 12/09/2022]
Abstract
In the last 20 years, N-Heterocyclic Carbene (NHC) ligands have been ubiquitous in biological and medicinal chemistry. Part of their success lies in the tremendous number of topologies that can be synthesized and thus finely tuned that have been described so far. This is particularly true in the case of those derivatives, including fluorine or fluorinated fragments on their NHC moieties, gaining much attention due to their enhanced biological properties and turning them into excellent candidates for the development of novel metallodrugs. Thus, this review summarizes the development that fluorinated-NHC transition metal complexes have had and their impact on cancer treatment.
Collapse
Affiliation(s)
- Ernesto Rufino-Felipe
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| | - Raúl Colorado-Peralta
- Facultad de Ciencias Quimicas, Universidad Veracruzana, Oriente 6 1009, Col. Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, Mexico
| | - Viviana Reyes-Márquez
- Departamento de Ciencias Quimico-Biologicas, Universidad de Sonora, Luis Encinas y Rosales s/n. CP 83000. Hermosillo, Sonora, Mexico
| | - Hugo Valdés
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| | - David Morales-Morales
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| |
Collapse
|
5
|
Backman-Blanco G, Valdés H, Ramírez-Apan MT, Cano-Sanchez P, Hernandez-Ortega S, Orjuela AL, Alí-Torres J, Flores-Gaspar A, Reyes-Martínez R, Morales-Morales D. Synthesis of Pt(II) complexes of the type [Pt(1,10-phenanthroline)(SArF n) 2] (SArF n = SC 6H 3-3,4-F 2; SC 6F 4-4-H; SC 6F 5). Preliminary evaluation of their in vitro anticancer activity. J Inorg Biochem 2020; 211:111206. [PMID: 32801098 DOI: 10.1016/j.jinorgbio.2020.111206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
A series of Pt(II) complexes of the type [Pt(1,10-phenanthroline)(SArFn)2] (SArFn = SC6H3-3,4-F2(1); SC6F4-4-H (2); SC6F5(3)) were synthesized from [Pt(1,10-phenanthroline)(Cl)2] and [Pb(SArFn)2] via metathesis reactions. The complexes were fully characterized including the unambiguous determination of their molecular structures by single-crystal X-ray diffraction techniques, showing the metal centers to be into a slightly distorted square-planar environments. The in vitro cytotoxic activity of the complexes was evaluated on six cancerous cell lines, i.e: glial cells of nervous central system (U-251), prostate (PC-3), leukemia (K-562), colon (HCT-15), breast (MCF-7) and lung (SKLU-1); we also included a healthy cell line of COS-7 (African green monkey kidney) for comparative purposes. We found that complex 2 was selective for PC-3. In addition, the IC50 values for the series of complexes were determined using the U-251, HCT-15 and SKLU-1 cancerous cell lines, as well as in the healthy cell line (COS-7), where complex 1 exhibited the best activity, with IC50 values going from 4.56 to 4.78 μM. These studies where further complemented with DNA docking theoretical calculations and DNA affinity experiments.
Collapse
Affiliation(s)
- Geraldine Backman-Blanco
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Hugo Valdés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Patricia Cano-Sanchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Simón Hernandez-Ortega
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Adrian L Orjuela
- Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 111321, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 111321, Colombia
| | - Areli Flores-Gaspar
- Departamento de Quimica, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | | | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico.
| |
Collapse
|
6
|
Ferraro MG, Piccolo M, Misso G, Maione F, Montesarchio D, Caraglia M, Paduano L, Santamaria R, Irace C. Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells 2020; 9:E1412. [PMID: 32517101 PMCID: PMC7349411 DOI: 10.3390/cells9061412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| |
Collapse
|