1
|
Tigmeanu CV, Ardelean LC, Rusu LC, Negrutiu ML. Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives-A Review. Polymers (Basel) 2022; 14:3658. [PMID: 36080732 PMCID: PMC9460687 DOI: 10.3390/polym14173658] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
3D-printing application in dentistry not only enables the manufacture of patient-specific devices and tissue constructs, but also allows mass customization, as well as digital workflow, with predictable lower cost and rapid turnaround times. 4D printing also shows a good impact in dentistry, as it can produce dynamic and adaptable materials, which have proven effective in the oral environment, under its continuously changing thermal and humidity conditions. It is expected to further boost the research into producing a whole tooth, capable to harmoniously integrate with the surrounding periodontium, which represents the ultimate goal of tissue engineering in dentistry. Because of their high versatility associated with the wide variety of available materials, additive manufacturing in dentistry predominantly targets the production of polymeric constructs. The aim of this narrative review is to catch a glimpse of the current state-of-the-art of additive manufacturing in dentistry, and the future perspectives of this modern technology, focusing on the specific polymeric materials.
Collapse
Affiliation(s)
- Codruta Victoria Tigmeanu
- Department of Technology of Materials and Devices in Dental Medicine, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Meda-Lavinia Negrutiu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, Research Center in Dental Medicine Using Conventional and Alternative Technologies, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
2
|
Zarrintaj P, Khodadadi Yazdi M, Youssefi Azarfam M, Zare M, Ramsey JD, Seidi F, Reza Saeb M, Ramakrishna S, Mozafari M. Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Eng Part A 2021; 27:821-843. [PMID: 33779319 DOI: 10.1089/ten.tea.2020.0341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering intends to create functionalized tissues/organs for regenerating the injured parts of the body using cells and scaffolds. A scaffold as a supporting substrate affects the cells' fate and behavior, including growth, proliferation, migration, and differentiation. Hydrogel as a biomimetic scaffold plays an important role in cellular behaviors and tissue repair, providing a microenvironment close to the extracellular matrix with adjustable mechanical and chemical features that can provide sufficient nutrients and oxygen. To enhance the hydrogel performance and compatibility with native niche, the cell-laden hydrogel is an attractive choice to mimic the function of the targeted tissue. Injectable hydrogels, due to the injectability, are ideal options for in vivo minimally invasive treatment. Cell-laden injectable hydrogels can be utilized for tissue regeneration in a noninvasive way. This article reviews the recent advances and future opportunities of cell-laden injectable hydrogels and their functions in tissue engineering. It is expected that this strategy allows medical scientists to develop a minimally invasive method for tissue regeneration in clinical settings. Impact statement Cell-laden hydrogels have been vastly utilized in biomedical application, especially tissue engineering. It is expected that this upcoming review article will be a motivation for the community. Although this strategy is still in its early stages, this concept is so alluring that it has attracted all scientists in the community and specialists at academic health centers. Certainly, this approach requires more development, and a bunch of crucial challenges have yet to be solved. In this review, we discuss this various aspects of this approach, the questions that must be answered, the expectations associated with it, and rational restrictions to develop injectable cell-laden hydrogels.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, and Faculty of Engineering, National University of Singapore, Singapore, Singapore.,Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zarrintaj P, Mahmodi G, Manouchehri S, Mashhadzadeh AH, Khodadadi M, Servatan M, Ganjali MR, Azambre B, Kim S, Ramsey JD, Habibzadeh S, Saeb MR, Mozafari M. Zeolite in tissue engineering: Opportunities and challenges. MedComm (Beijing) 2020; 1:5-34. [PMID: 34766107 PMCID: PMC8489670 DOI: 10.1002/mco2.5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering and regenerative medicine follow a multidisciplinary attitude to the expansion and application of new materials for the treatment of different tissue defects. Typically, proper tissue regeneration is accomplished through concurrent biocompatibility and positive cellular activity. This can be resulted by the smart selection of platforms among bewildering arrays of structural possibilities with various porosity properties (ie, pore size, pore connectivity, etc). Among diverse porous structures, zeolite is known as a microporous tectosilicate that can potentially provide a biological microenvironment in tissue engineering applications. In addition, zeolite has been particularly appeared promising in wound dressing and bone‐ and tooth‐oriented scaffolds. The wide range of composition and hierarchical pore structure renders the zeolitic materials a unique character, particularly, for tissue engineering purposes. Despite such unique features, research on zeolitic platforms for tissue engineering has not been classically presented. In this review, we overview, classify, and categorize zeolitic platforms employed in biological and tissue engineering applications.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical EngineeringOklahoma State University 420 Engineering North Stillwater OK USA
| | - Ghader Mahmodi
- School of Chemical EngineeringOklahoma State University 420 Engineering North Stillwater OK USA
| | - Saeed Manouchehri
- School of Chemical EngineeringOklahoma State University 420 Engineering North Stillwater OK USA
| | - Amin Hamed Mashhadzadeh
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Mohsen Khodadadi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Morteza Servatan
- Polymer Engineering DepartmentFaculty of Engineering, Urmia University Urmia Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of Tehran Tehran Iran
- Biosensor Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Bruno Azambre
- Université de LorraineLaboratoire de Chimie et Physique‐Approche Multi‐Echelle des Milieux Complexes (LCP‐A2MC‐ EA n°4362)Institut Jean‐Barriol FR2843 CNRS Rue Victor Demange Saint‐Avold 57500 France
| | - Seok‐Jhin Kim
- School of Chemical EngineeringOklahoma State University 420 Engineering North Stillwater OK USA
| | - Josh D Ramsey
- School of Chemical EngineeringOklahoma State University 420 Engineering North Stillwater OK USA
| | - Sajjad Habibzadeh
- Department of Chemical EngineeringAmirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Mohammad Reza Saeb
- Department of Resin and AdditiveInstitute for Color Science and Technology Tehran Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative MedicineFaculty of Advanced Technologies in MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|