1
|
Rai S, Singh A, Omkar O, Mishra G. Effect of larval thermal conditions on limb regeneration in a ladybird beetle, Cheilomenes sexmaculata. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:825-837. [PMID: 37465962 DOI: 10.1002/jez.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
In view of global environmental change, ecological factors especially temperature, affect development of the poikilotherms like insects. Since ladybirds are at risk of injury under mass-rearing conditions, their ability to regenerate injured limbs is highly crucial for their survival. Therefore, the effect of limb regeneration in relation to temperature forms the basis of the present study. The immature stages of insects, being more vulnerable to the surrounding temperature, were considered to study the effect of the prior thermal experience of larvae on regeneration. We exposed the early larval stages of the ladybird beetle, Cheilomenes sexmaculata, to different temperature conditions pre- and postamputation. Exposure of immature stages to extreme temperatures did not affect the ability to regenerate and regeneration occurred at given temperature conditions. However, the regenerated legs were smaller in size across given temperatures as compared to unamputated legs. Body weights in amputated treatments showed no difference and remained unchanged across temperatures when compared to unamputated treatments. Postamputation developmental duration, equivalent to recovery time postlimb amputation, was found to be affected by larval thermal conditions. Recovery was faster in larval treatments exposed to higher temperatures. Thus, larval thermal conditions though did not affect the ability to regenerate lost limbs directly, it does modulate the time taken to regenerate.
Collapse
Affiliation(s)
- Shriza Rai
- Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow, India
| | - Anupama Singh
- Department of Statistics, University of Lucknow, Lucknow, India
| | - Omkar Omkar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Geetanjali Mishra
- Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow, India
| |
Collapse
|
2
|
Tajer B, Savage AM, Whited JL. The salamander blastema within the broader context of metazoan regeneration. Front Cell Dev Biol 2023; 11:1206157. [PMID: 37635872 PMCID: PMC10450636 DOI: 10.3389/fcell.2023.1206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Throughout the animal kingdom regenerative ability varies greatly from species to species, and even tissue to tissue within the same organism. The sheer diversity of structures and mechanisms renders a thorough comparison of molecular processes truly daunting. Are "blastemas" found in organisms as distantly related as planarians and axolotls derived from the same ancestral process, or did they arise convergently and independently? Is a mouse digit tip blastema orthologous to a salamander limb blastema? In other fields, the thorough characterization of a reference model has greatly facilitated these comparisons. For example, the amphibian Spemann-Mangold organizer has served as an amazingly useful comparative template within the field of developmental biology, allowing researchers to draw analogies between distantly related species, and developmental processes which are superficially quite different. The salamander limb blastema may serve as the best starting point for a comparative analysis of regeneration, as it has been characterized by over 200 years of research and is supported by a growing arsenal of molecular tools. The anatomical and evolutionary closeness of the salamander and human limb also add value from a translational and therapeutic standpoint. Tracing the evolutionary origins of the salamander blastema, and its relatedness to other regenerative processes throughout the animal kingdom, will both enhance our basic biological understanding of regeneration and inform our selection of regenerative model systems.
Collapse
Affiliation(s)
| | | | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
3
|
Zhong J, Jing A, Zheng S, Li S, Zhang X, Ren C. Physiological and molecular mechanisms of insect appendage regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:9. [PMID: 36859631 PMCID: PMC9978051 DOI: 10.1186/s13619-022-00156-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 03/03/2023]
Abstract
Regeneration, as a fascinating scientific field, refers to the ability of animals replacing lost tissue or body parts. Many metazoan organisms have been reported with the regeneration phenomena, but showing evolutionarily variable abilities. As the most diverse metazoan taxon, hundreds of insects show strong appendage regeneration ability. The regeneration process and ability are dependent on many factors, including macroscopic physiological conditions and microscopic molecular mechanisms. This article reviews research progress on the physiological conditions and internal underlying mechanisms controlling appendage regeneration in insects.
Collapse
Affiliation(s)
- Jiru Zhong
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Andi Jing
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shaojuan Zheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779 China
| | - Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| |
Collapse
|
4
|
Diehl OJ, Assano PK, da Costa TRG, Oliveira R, Marques-Souza H, Umbuzeiro GDA. Antenna regeneration as an ecotoxicological endpoint in a marine amphipod: a proof of concept using dimethyl sulfoxide and diflubenzuron. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:751-755. [PMID: 33770306 DOI: 10.1007/s10646-021-02395-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Regeneration is a widely spread process across the animal kingdom, including many species of marine crustaceans. It is strongly linked to hormonal cycles and, therefore, a great endpoint candidate for toxicology studies. We selected the amphipod Parhyale hawaiensis as test organism, already used in ecotoxicological studies and able to regenerate its body appendages. We are proposing a protocol to use the antenna regeneration as a toxicity endpoint. First, we evaluated differences in time of completion of regeneration in males and females after the amputation of one antenna of 6 months old animals. Then we compared the influence of different testing volumes in the regeneration process (100 and 5 mL). We used as testing substances, dimethyl sulfoxide (DMSO) and diflubenzuron, a chitin synthesis inhibitor. The most suitable protocol consisted of volumes of 5 mL in 12-well microplates, with 1 organism per well, 12 organisms per concentration (1:1 females/males) and test time duration of around 5 weeks. DMSO accelerated regeneration time with a NOEC of 0.06%. Diflubenzuron inhibited the time necessary to its completion with a NOEC of 0.32 μg L-1. We conclude that the Parhyale hawaiensis antenna regeneration protocol proposed here is a potential tool in ecotoxicology, but more studies are required for its validation not only to verify its utility for testing chemicals but also environmental samples.
Collapse
Affiliation(s)
- Otávio J Diehl
- School of Technology, University of Campinas, Limeira, 13484-332, Brazil
| | - Patrícia K Assano
- School of Technology, University of Campinas, Limeira, 13484-332, Brazil
| | | | - Rhaul Oliveira
- School of Technology, University of Campinas, Limeira, 13484-332, Brazil
| | | | | |
Collapse
|
5
|
Elchaninov A, Sukhikh G, Fatkhudinov T. Evolution of Regeneration in Animals: A Tangled Story. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.621686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of regenerative capacity in multicellular animals represents one of the most complex and intriguing problems in biology. How could such a seemingly advantageous trait as self-repair become consistently attenuated by the evolution? This review article examines the concept of the origin and nature of regeneration, its connection with the processes of embryonic development and asexual reproduction, as well as with the mechanisms of tissue homeostasis. The article presents a variety of classical and modern hypotheses explaining different trends in the evolution of regenerative capacity which is not always beneficial for the individual and notably for the species. Mechanistically, these trends are driven by the evolution of signaling pathways and progressive restriction of differentiation plasticity with concomitant advances in adaptive immunity. Examples of phylogenetically enhanced regenerative capacity are considered as well, with appropriate evolutionary reasoning for the enhancement and discussion of its molecular mechanisms.
Collapse
|
6
|
Meng F, Sun N, Liu D, Jia J, Xiao J, Dai H. BCL2L13: physiological and pathological meanings. Cell Mol Life Sci 2021; 78:2419-2428. [PMID: 33201252 PMCID: PMC11073179 DOI: 10.1007/s00018-020-03702-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
BCL2L13 is a BCL2-like protein. It has been discovered for two decades, now on the way to be a hotspot of research with its physiological and pathological meanings found in recent years. Start with the pro-apoptotic activity, there have been reported consecutively that BCL2L13 could also induce mitochondrial fragmentation, inhibit cell death and promote mitophagy. Similar to BNIP3, BCL2L13 cannot be indiscriminately categorized into pro- or anti-apoptotic proteins. It anchors in the mitochondrial outer membrane, and expresses in various cells and tissues. This article reviews for the first time that BCL2L13 functions in physiological processes, such as growth and development and energy metabolism, and its dysregulation participating in pathological processes, including cancer, bacterial infection, cardiovascular diseases and degenerative diseases, suggesting its important roles in these events.
Collapse
Affiliation(s)
- Fei Meng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Naitong Sun
- Department of Hematology, the Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Dongyan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Jia Jia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Jun Xiao
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|