1
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
2
|
Bryl R, Kulus M, Bryja A, Domagała D, Mozdziak P, Antosik P, Bukowska D, Zabel M, Dzięgiel P, Kempisty B. Cardiac progenitor cell therapy: mechanisms of action. Cell Biosci 2024; 14:30. [PMID: 38444042 PMCID: PMC10913616 DOI: 10.1186/s13578-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznan, 61-614, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, 65-046, Poland
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland.
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
3
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
4
|
Scalise M, Marino F, Salerno L, Amato N, Quercia C, Siracusa C, Filardo A, Chiefalo A, Pagano L, Misdea G, Salerno N, De Angelis A, Urbanek K, Viglietto G, Torella D, Cianflone E. Adult Multipotent Cardiac Progenitor-Derived Spheroids: A Reproducible Model of In Vitro Cardiomyocyte Commitment and Specification. Cells 2023; 12:1793. [PMID: 37443827 PMCID: PMC10341123 DOI: 10.3390/cells12131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Three-dimensional cell culture systems hold great promise for bridging the gap between in vitro cell-based model systems and small animal models to study tissue biology and disease. Among 3D cell culture systems, stem-cell-derived spheroids have attracted significant interest as a strategy to better mimic in vivo conditions. Cardiac stem cell/progenitor (CSC)-derived spheroids (CSs) provide a relevant platform for cardiac regeneration. METHODS We compared three different cell culture scaffold-free systems, (i) ultra-low attachment plates, (ii) hanging drops (both requiring a 2D/3D switch), and (iii) agarose micro-molds (entirely 3D), for CSC-derived CS formation and their cardiomyocyte commitment in vitro. RESULTS The switch from a 2D to a 3D culture microenvironment per se guides cell plasticity and myogenic differentiation within CS and is necessary for robust cardiomyocyte differentiation. On the contrary, 2D monolayer CSC cultures show a significant reduced cardiomyocyte differentiation potential compared to 3D CS culture. Forced aggregation into spheroids using hanging drop improves CS myogenic differentiation when compared to ultra-low attachment plates. Performing CS formation and myogenic differentiation exclusively in 3D culture using agarose micro-molds maximizes the cardiomyocyte yield. CONCLUSIONS A 3D culture system instructs CS myogenic differentiation, thus representing a valid model that can be used to study adult cardiac regenerative biology.
Collapse
Affiliation(s)
- Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Nunzia Amato
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Claudia Quercia
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Loredana Pagano
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Giuseppe Misdea
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121 Naples, Italy;
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| |
Collapse
|
5
|
Molinaro C, Scalise M, Leo I, Salerno L, Sabatino J, Salerno N, De Rosa S, Torella D, Cianflone E, Marino F. Polarizing Macrophage Functional Phenotype to Foster Cardiac Regeneration. Int J Mol Sci 2023; 24:10747. [PMID: 37445929 DOI: 10.3390/ijms241310747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is an increasing interest in understanding the connection between the immune and cardiovascular systems, which are highly integrated and communicate through finely regulated cross-talking mechanisms. Recent evidence has demonstrated that the immune system does indeed have a key role in the response to cardiac injury and in cardiac regeneration. Among the immune cells, macrophages appear to have a prominent role in this context, with different subtypes described so far that each have a specific influence on cardiac remodeling and repair. Similarly, there are significant differences in how the innate and adaptive immune systems affect the response to cardiac damage. Understanding all these mechanisms may have relevant clinical implications. Several studies have already demonstrated that stem cell-based therapies support myocardial repair. However, the exact role that cardiac macrophages and their modulation may have in this setting is still unclear. The current need to decipher the dual role of immunity in boosting both heart injury and repair is due, at least for a significant part, to unresolved questions related to the complexity of cardiac macrophage phenotypes. The aim of this review is to provide an overview on the role of the immune system, and of macrophages in particular, in the response to cardiac injury and to outline, through the modulation of the immune response, potential novel therapeutic strategies for cardiac regeneration.
Collapse
Affiliation(s)
- Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Bryl R, Nawrocki MJ, Jopek K, Kaczmarek M, Bukowska D, Antosik P, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Transcriptomic Characterization of Genes Regulating the Stemness in Porcine Atrial Cardiomyocytes during Primary In Vitro Culture. Genes (Basel) 2023; 14:1223. [PMID: 37372403 PMCID: PMC10297922 DOI: 10.3390/genes14061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Heart failure remains a major cause of death worldwide. There is a need to establish new management options as current treatment is frequently suboptimal. Clinical approaches based on autologous stem cell transplant is potentially a good alternative. The heart was long considered an organ unable to regenerate and renew. However, several reports imply that it may possess modest intrinsic regenerative potential. To allow for detailed characterization of cell cultures, whole transcriptome profiling was performed after 0, 7, 15, and 30 days of in vitro cell cultures (IVC) from the right atrial appendage and right atrial wall utilizing microarray technology. In total, 4239 differentially expressed genes (DEGs) with ratio > abs |2| and adjusted p-value ≤ 0.05 for the right atrial wall and 4662 DEGs for the right atrial appendage were identified. It was shown that a subset of DEGs, which have demonstrated some regulation of expression levels with the duration of the cell culture, were enriched in the following GO BP (Gene Ontology Biological Process) terms: "stem cell population maintenance" and "stem cell proliferation". The results were validated by RT-qPCR. The establishment and detailed characterization of in vitro culture of myocardial cells may be important for future applications of these cells in heart regeneration processes.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, 61-614 Poznan, Poland;
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
7
|
Salerno N, Marino F, Scalise M, Salerno L, Molinaro C, Filardo A, Chiefalo A, Panuccio G, De Angelis A, Urbanek K, Torella D, Cianflone E. Pharmacological clearance of senescent cells improves cardiac remodeling and function after myocardial infarction in female aged mice. Mech Ageing Dev 2022; 208:111740. [PMID: 36150603 DOI: 10.1016/j.mad.2022.111740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are predominantly an aging disease. Important sex-specific differences exist and the mechanism(s) by which this sex-by-age interaction influences CVD development and progression remains elusive. Accordingly, it is still unknown whether cell senescence, a main feature of cardiac male aging, is a significant feature also of the female aged mouse heart and whether senolytics, senescence-clearing compounds, promote myocardial repair and regeneration after myocardial infarction (MI) in aged female mice. To this aim, the combination of two senolytics, dasatinib and quercetin (D+Q) or just their vehicle was administered to 22-24 months old C57BL/6 female mice after MI. D+Q improved global left ventricle function and myocardial performance after MI whereby female cardiac aging is characterized by accumulation of cardiac senescent cells that are further increased by MI. Despite their terminal differentiation nature, also cardiomyocytes acquire a senescent phenotype with age in females. D+Q removed senescent cardiac non-myocyte and myocyte cells ameliorating cardiac remodeling and regeneration. Senolytics removed aged dysfunctional cardiac stem/progenitor cells (CSCs), relieving healthy CSCs with normal proliferative and cardiomyogenic differentiation potential. In conclusions, cardiac senescent cells accumulate in the aged female hearts. Removing senescent cells is a key therapeutic target for efficient repair of the aged female heart.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.
| |
Collapse
|
8
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
9
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
10
|
Marino F, Scalise M, Salerno N, Salerno L, Molinaro C, Cappetta D, Torella M, Greco M, Foti D, Sasso FC, Mastroroberto P, De Angelis A, Ellison-Hughes GM, Sampaolesi M, Rota M, Rossi F, Urbanek K, Nadal-Ginard B, Torella D, Cianflone E. Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory Phenotype Impair Cardiac Regeneration and Function Independently of Age. Diabetes 2022; 71:1081-1098. [PMID: 35108360 PMCID: PMC9490451 DOI: 10.2337/db21-0536] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/30/2022] [Indexed: 11/13/2022]
Abstract
Diabetes mellitus (DM) affects the biology of multipotent cardiac stem/progenitor cells (CSCs) and adult myocardial regeneration. We assessed the hypothesis that senescence and senescence-associated secretory phenotype (SASP) are main mechanisms of cardiac degenerative defect in DM. Accordingly, we tested whether ablation of senescent CSCs would rescue the cardiac regenerative/reparative defect imposed by DM. We obtained cardiac tissue from nonaged (50- to 64-year-old) patients with type 2 diabetes mellitus (T2DM) and without DM (NDM) and postinfarct cardiomyopathy undergoing cardiac surgery. A higher reactive oxygen species production in T2DM was associated with an increased number of senescent/dysfunctional T2DM-human CSCs (hCSCs) with reduced proliferation, clonogenesis/spherogenesis, and myogenic differentiation versus NDM-hCSCs in vitro. T2DM-hCSCs showed a defined pathologic SASP. A combination of two senolytics, dasatinib (D) and quercetin (Q), cleared senescent T2DM-hCSCs in vitro, restoring their expansion and myogenic differentiation capacities. In a T2DM model in young mice, diabetic status per se (independently of ischemia and age) caused CSC senescence coupled with myocardial pathologic remodeling and cardiac dysfunction. D + Q treatment efficiently eliminated senescent cells, rescuing CSC function, which resulted in functional myocardial repair/regeneration, improving cardiac function in murine DM. In conclusion, DM hampers CSC biology, inhibiting CSCs' regenerative potential through the induction of cellular senescence and SASP independently from aging. Senolytics clear senescence, abrogating the SASP and restoring a fully proliferative/differentiation-competent hCSC pool in T2DM with normalization of cardiac function.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Michele Torella
- Department of Translational Medicine, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Marta Greco
- Department of Health Sciences, Magna Græcia University, Catanzaro, Italy
| | - Daniela Foti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Ferdinando C. Sasso
- Department of Translational Medicine, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London, U.K
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Bernardo Nadal-Ginard
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
- Corresponding authors: Daniele Torella, , and Eleonora Cianflone,
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
- Department of Physiology, New York Medical College, Valhalla, NY
- Corresponding authors: Daniele Torella, , and Eleonora Cianflone,
| |
Collapse
|
11
|
Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants (Basel) 2022; 11:antiox11020208. [PMID: 35204091 PMCID: PMC8868283 DOI: 10.3390/antiox11020208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.
Collapse
|
12
|
Buja LM, Mitchell RN. Basic pathobiology of cell-based therapies and cardiac regenerative medicine. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. Int J Mol Sci 2021; 22:ijms222413180. [PMID: 34947977 PMCID: PMC8708686 DOI: 10.3390/ijms222413180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.
Collapse
|
14
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
15
|
Dergilev KV, Tsokolaeva ZI, Vasilets YD, Beloglazova IB, Kulbitsky BN, Parfyonova YV. Hypoxia - as a Possible Regulator of the Activity of Epicardial Mesothelial Cells After Myocardial Infarction. ACTA ACUST UNITED AC 2021; 61:59-68. [PMID: 34311689 DOI: 10.18087/cardio.2021.6.n1476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 11/18/2022]
Abstract
Aim To study the effect of hypoxia on the activity of epithelial-mesenchymal transition (EMT) in epicardial cells, which provides formation of a specialized microenvironment.Material and methods This study used a model of experimental myocardial infarction created by ligation of the anterior descendent coronary artery. The activity of epicardial cells after a hypoxic exposure was studied with the hypoxia marker, pimonidazole, bromodeoxyuridine, immunofluorescent staining of heart cryosections, and in vitro mesothelial cell culture.Results The undamaged heart maintained the quiescent condition of mesothelial cells and low levels of their proliferation, extracellular matrix protein production, and of the EMT activity. Acute ischemic injury induced moderate hypoxia in the epicardial/subepicardial region. This caused a global rearrangement of this region due to the initiation of EMT in cells, changes in the cell composition, and accumulation of extracellular matrix proteins. We found that the initiation of EMT in mesothelial cells may result in the formation of smooth muscle cell precursors, fibroblasts, and a population of Sca-1+ cardiac progenitor cells, which may both participate in construction of new blood vessels and serve as a mesenchymal link for the paracrine support of microenvironmental cells. In in vitro experiments, we showed that 72‑h hypoxia facilitated activation of EMT regulatory genes, induced dissembling of intercellular contacts, cell uncoupling, and increased cell plasticity.Conclusion The epicardium of an adult heart serves as a "reparative reserve" that can be reactivated by a hypoxic exposure. This creates a basis for an approach to influence the epicardium to modulate its activity for regulating reparative processes.
Collapse
Affiliation(s)
- K V Dergilev
- Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow
| | - Z I Tsokolaeva
- Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow; V. A. Negovsky Research Institute of General Reanimatology, Moscow
| | - Yu D Vasilets
- Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow
| | - I B Beloglazova
- Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow
| | - B N Kulbitsky
- Hospital for War Veterans №3 of the Moscow City Health Department, Moscow
| | - Ye V Parfyonova
- Angiogenesis Laboratory, National Medical Research Center for Cardiology, Moscow; Moscow State University, Faculty of Basic Medicine, Laboratory of Postgenomic Technologies in Medicine, Moscow
| |
Collapse
|
16
|
Marino F, Scalise M, Cianflone E, Salerno L, Cappetta D, Salerno N, De Angelis A, Torella D, Urbanek K. Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants (Basel) 2021; 10:1002. [PMID: 34201562 PMCID: PMC8300666 DOI: 10.3390/antiox10071002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the "nitroso-redox imbalance". Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| |
Collapse
|
17
|
Basic Science of Resident Stem Cells. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21207701. [PMID: 33080988 PMCID: PMC7589970 DOI: 10.3390/ijms21207701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells’ delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario.
Collapse
|
19
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Mancuso T, Barone A, Salatino A, Molinaro C, Marino F, Scalise M, Torella M, De Angelis A, Urbanek K, Torella D, Cianflone E. Unravelling the Biology of Adult Cardiac Stem Cell-Derived Exosomes to Foster Endogenous Cardiac Regeneration and Repair. Int J Mol Sci 2020; 21:E3725. [PMID: 32466282 PMCID: PMC7279257 DOI: 10.3390/ijms21103725] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac remuscularization has been the stated goal of the field of regenerative cardiology since its inception. Along with the refreshment of lost and dysfunctional cardiac muscle cells, the field of cell therapy has expanded in scope encompassing also the potential of the injected cells as cardioprotective and cardio-reparative agents for cardiovascular diseases. The latter has been the result of the findings that cell therapies so far tested in clinical trials exert their beneficial effects through paracrine mechanisms acting on the endogenous myocardial reparative/regenerative potential. The endogenous regenerative potential of the adult heart is still highly debated. While it has been widely accepted that adult cardiomyocytes (CMs) are renewed throughout life either in response to wear and tear and after injury, the rate and origin of this phenomenon are yet to be clarified. The adult heart harbors resident cardiac/stem progenitor cells (CSCs/CPCs), whose discovery and characterization were initially sufficient to explain CM renewal in response to physiological and pathological stresses, when also considering that adult CMs are terminally differentiated cells. The role of CSCs in CM formation in the adult heart has been however questioned by some recent genetic fate map studies, which have been proved to have serious limitations. Nevertheless, uncontested evidence shows that clonal CSCs are effective transplantable regenerative agents either for their direct myogenic differentiation and for their paracrine effects in the allogeneic setting. In particular, the paracrine potential of CSCs has been the focus of the recent investigation, whereby CSC-derived exosomes appear to harbor relevant regenerative and reparative signals underlying the beneficial effects of CSC transplantation. This review focuses on recent advances in our knowledge about the biological role of exosomes in heart tissue homeostasis and repair with the idea to use them as tools for new therapeutic biotechnologies for "cell-less" effective cardiac regeneration approaches.
Collapse
Affiliation(s)
- Teresa Mancuso
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Antonella Barone
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Alessandro Salatino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Claudia Molinaro
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Fabiola Marino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| |
Collapse
|
21
|
Balbi C, Costa A, Barile L, Bollini S. Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells 2020; 9:cells9030724. [PMID: 32183455 PMCID: PMC7140681 DOI: 10.3390/cells9030724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischaemic cardiac disease is associated with a loss of cardiomyocytes and an intrinsic lack of myocardial renewal. Recent work has shown that the heart retains limited cardiomyocyte proliferation, which remains inefficient when facing pathological conditions. While broadly active in the neonatal mammalian heart, this mechanism becomes quiescent soon after birth, suggesting loss of regenerative potential with maturation into adulthood. A key question is whether this temporary regenerative window can be enhanced via appropriate stimulation and further extended. Recently the search for novel therapeutic approaches for heart disease has centred on stem cell biology. The “paracrine effect” has been proposed as a promising strategy to boost endogenous reparative and regenerative mechanisms from within the cardiac tissue by exploiting the modulatory potential of soluble stem cell-secreted factors. As such, growing interest has been specifically addressed towards stem/progenitor cell-secreted extracellular vesicles (EVs), which can be easily isolated in vitro from cell-conditioned medium. This review will provide a comprehensive overview of the current paradigm on cardiac repair and regeneration, with a specific focus on the role and mechanism(s) of paracrine action of EVs from cardiac stromal progenitors as compared to exogenous stem cells in order to discuss the optimal choice for future therapy. In addition, the challenges to overcoming translational EV biology from bench to bedside for future cardiac regenerative medicine will be discussed.
Collapse
Affiliation(s)
- Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
| | - Ambra Costa
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Correspondence: (L.B.); (S.B.)
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Correspondence: (L.B.); (S.B.)
| |
Collapse
|