1
|
Ahluwalia K, Du Z, Martinez-Camarillo JC, Naik A, Thomas BB, Pollalis D, Lee SY, Dave P, Zhou E, Li Z, Chester C, Humayun MS, Louie SG. Unveiling Drivers of Retinal Degeneration in RCS Rats: Functional, Morphological, and Molecular Insights. Int J Mol Sci 2024; 25:3749. [PMID: 38612560 PMCID: PMC11011632 DOI: 10.3390/ijms25073749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zhaodong Du
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| | - Juan Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| |
Collapse
|
2
|
Yamashita K, Ostrovidov S, Raut B, Hori T, Nashimoto Y, Nagai N, Abe T, Kaji H. Minimally Invasive Sub-Retinal Transplantation of RPE-J Cells on a Biodegradable Composite PCL/Collagen Nanosheet. Cell Transplant 2023; 32:9636897231165117. [PMID: 37039377 PMCID: PMC10103099 DOI: 10.1177/09636897231165117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Retinal cells are irreparably damaged by diseases such as age-related macular degeneration (AMD). A promising method to restore partial or whole vision is through cell-based transplantation to the damaged location. However, cell transplantation using conventional vitreous surgery is an invasive procedure that may induce infections and has a high failure rate of cell engraftment. In this study, we describe the fabrication of a biodegradable composite nanosheet used as a substrate to support retinal pigment epithelial (RPE-J) cells, which can be grafted to the sub-retinal space using a minimally invasive approach. The nanosheet was fabricated using polycaprolactone (PCL) and collagen in 80:20 weight ratio, and had size of 200 µm in diameter and 300 nm in thickness. These PCL/collagen nanosheets showed excellent biocompatibility and mechanical strength in vitro. Using a custom designed 27-gauge glass needle, we successfully transplanted an RPE-J cell loaded nanosheet into the sub-retinal space of a rat model with damaged photoreceptors. The cell loaded nanosheet did not trigger immunological reaction within 2 weeks of implantation and restored the retinal environment. Thus, this composite PCL/collagen nanosheet holds great promise for organized cell transplantation, and the treatment of retinal diseases.
Collapse
Affiliation(s)
- Kazuya Yamashita
- Department of Finemechanics, Graduate
School of Engineering, Tohoku University, Sendai, Japan
| | - Serge Ostrovidov
- Institute of Biomaterials and
Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bibek Raut
- Weldon School of Biomedical
Engineering, Purdue University, West Lafayette, IN, USA
| | - Takeshi Hori
- Institute of Biomaterials and
Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Nashimoto
- Institute of Biomaterials and
Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy,
United Centers for Advanced Research and Translational Medicine, Tohoku University
Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy,
United Centers for Advanced Research and Translational Medicine, Tohoku University
Graduate School of Medicine, Sendai, Japan
| | - Hirokazu Kaji
- Institute of Biomaterials and
Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Markert EK, Klein H, Viollet C, Rust W, Strobel B, Kauschke SG, Makovoz B, Neubauer H, Bakker RA, Blenkinsop TA. Transcriptional comparison of adult human primary Retinal Pigment Epithelium, human pluripotent stem cell-derived Retinal Pigment Epithelium, and ARPE19 cells. Front Cell Dev Biol 2022; 10:910040. [PMID: 36092714 PMCID: PMC9461284 DOI: 10.3389/fcell.2022.910040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
The therapeutic potential of pluripotent stem cells is great as they promise to usher in a new era of medicine where cells or organs may be prescribed to replace dysfunctional tissue. At the forefront are efforts in the eye to develop this technology as it lends itself to in vivo monitoring and sophisticated non-invasive imaging modalities. In the retina, retinal pigment epithelium (RPE) is the most promising replacement cell as it has a single layer, is relatively simple to transplant, and is associated with several eye diseases. However, after transplantation, the cells may transform and cause complications. This transformation may be partially due to incomplete maturation. With the goal of learning how to mature RPE, we compared induced pluripotent stem cell-derived RPE (iPSC-RPE) cells with adult human primary RPE (ahRPE) cells and the immortalized human ARPE-19 line. We cultured ARPE-19, iPSC-RPE, and ahRPE cells for one month, and evaluated morphology, RPE marker staining, and transepithelial electrical resistance (TEER) as quality control indicators. We then isolated RNA for bulk RNA-sequencing and DNA for genotyping. We genotyped ahRPE lines for the top age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR) risk allele polymorphisms. Transcriptome data verified that both adult and iPSC-RPE exhibit similar RPE gene expression signatures, significantly higher than ARPE-19. In addition, in iPSC-RPE, genes relating to stem cell maintenance, retina development, and muscle contraction were significantly upregulated compared to ahRPE. We compared ahRPE to iPSC-RPE in a model of epithelial-mesenchymal transition (EMT) and observed an increased sensitivity of iPSC-RPE to producing contractile aggregates in vitro which resembles incident reports upon transplantation. P38 inhibition was capable of inhibiting iPSC-RPE-derived aggregates. In summary, we find that the transcriptomic signature of iPSC-RPE conveys an immature RPE state which may be ameliorated by targeting "immature" gene regulatory networks.
Collapse
Affiliation(s)
- Elke K. Markert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Holger Klein
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Werner Rust
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Benjamin Strobel
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Stefan G. Kauschke
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Bar Makovoz
- Ophthalmology Cell Development and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Remko A. Bakker
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Timothy A. Blenkinsop
- Ophthalmology Cell Development and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Sun F, Sun Y, Zhu J, Wang X, Ji C, Zhang J, Chen S, Yu Y, Xu W, Qian H. Mesenchymal stem cells-derived small extracellular vesicles alleviate diabetic retinopathy by delivering NEDD4. Stem Cell Res Ther 2022; 13:293. [PMID: 35841055 PMCID: PMC9284871 DOI: 10.1186/s13287-022-02983-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background As a leading cause of vision decline and severe blindness in adults, diabetic retinopathy (DR) is characterized by the aggravation of retinal oxidative stress and apoptosis in the early stage. Emerging studies reveal that mesenchymal stem cells-derived small extracellular vesicles (MSC-sEV) treatment represents a promising cell-free approach to alleviate ocular disorders. However, the repairing effects of MSC-sEV in DR remain largely unclear. This study aimed at exploring the role and the underlying mechanism of MSC-sEV in hyperglycemia-induced retinal degeneration. Methods In vivo, we used streptozotocin (STZ) to establish diabetic rat model, followed by the intravitreal injection of MSC-sEV to determine the curative effect. The cell viability and antioxidant capacity of retinal pigment epithelium (RPE) cells stimulated with high-glucose (HG) medium after MSC-sEV treatment were analyzed in vitro. By detecting the response of cell signaling pathways in MSC-sEV-treated RPE cells, we explored the functional mechanism of MSC-sEV. Mass spectrometry was performed to reveal the bioactive protein which mediated the role of MSC-sEV. Results The intravitreal injection of MSC-sEV elicited antioxidant effects and counteracted retinal apoptosis in STZ-induced DR rat model. MSC-sEV treatment also reduced the oxidative level and enhanced the proliferation ability of RPE cells cultured in HG conditions in vitro. Further studies showed that the increased level of phosphatase and tensin homolog (PTEN) inhibited AKT phosphorylation and nuclear factor erythroid 2-related factor 2 (NRF2) expression in RPE cells stimulated with HG medium, which could be reversed by MSC-sEV intervention. Through mass spectrometry, we illustrated that MSC-sEV-delivered neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) could cause PTEN ubiquitination and degradation, activate AKT signaling and upregulate NRF2 level to prevent DR progress. Moreover, NEDD4 knockdown impaired MSC-sEV-mediated retinal therapeutic effects. Conclusions Our findings indicated that MSC-sEV ameliorated DR through NEDD4-induced regulation on PTEN/AKT/NRF2 signaling pathway, thus revealing the efficiency and mechanism of MSC-sEV-based retinal protection and providing new insights into the treatment of DR. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02983-0.
Collapse
Affiliation(s)
- Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Junyan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shenyuan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yifan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Fenner BJ, Tan TE, Barathi AV, Tun SBB, Yeo SW, Tsai ASH, Lee SY, Cheung CMG, Chan CM, Mehta JS, Teo KYC. Gene-Based Therapeutics for Inherited Retinal Diseases. Front Genet 2022; 12:794805. [PMID: 35069693 PMCID: PMC8782148 DOI: 10.3389/fgene.2021.794805] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogenous group of orphan eye diseases that typically result from monogenic mutations and are considered attractive targets for gene-based therapeutics. Following the approval of an IRD gene replacement therapy for Leber's congenital amaurosis due to RPE65 mutations, there has been an intensive international research effort to identify the optimal gene therapy approaches for a range of IRDs and many are now undergoing clinical trials. In this review we explore therapeutic challenges posed by IRDs and review current and future approaches that may be applicable to different subsets of IRD mutations. Emphasis is placed on five distinct approaches to gene-based therapy that have potential to treat the full spectrum of IRDs: 1) gene replacement using adeno-associated virus (AAV) and nonviral delivery vectors, 2) genome editing via the CRISPR/Cas9 system, 3) RNA editing by endogenous and exogenous ADAR, 4) mRNA targeting with antisense oligonucleotides for gene knockdown and splicing modification, and 5) optogenetic approaches that aim to replace the function of native retinal photoreceptors by engineering other retinal cell types to become capable of phototransduction.
Collapse
Affiliation(s)
- Beau J Fenner
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Tien-En Tan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | | | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore, Singapore
| | - Sia Wey Yeo
- Singapore Eye Research Institute, Singapore, Singapore
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Choi Mun Chan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Jodhbir S Mehta
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore.,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Yong Loo Lin School of Medicine, Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Kelvin Y C Teo
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| |
Collapse
|
6
|
Christelle M, Lise M, Ben M'Barek K. Challenges of cell therapies for retinal diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:49-77. [DOI: 10.1016/bs.irn.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Marconi S, Stout JT. PDE6B Mutation-associated Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:133-142. [PMID: 34584050 DOI: 10.1097/iio.0000000000000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Phelan MA, Kruczek K, Wilson JH, Brooks MJ, Drinnan CT, Regent F, Gerstenhaber JA, Swaroop A, Lelkes PI, Li T. Soy Protein Nanofiber Scaffolds for Uniform Maturation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Tissue Eng Part C Methods 2020; 26:433-446. [PMID: 32635833 DOI: 10.1089/ten.tec.2020.0072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Retinal pigment epithelium (RPE) differentiated from human induced pluripotent stem cells, called induced retinal pigment epithelium (iRPE), is being explored as a cell-based therapy for the treatment of retinal degenerative diseases, especially age-related macular degeneration. The success of RPE implantation is linked to the use of biomimetic scaffolds that simulate Bruch's membrane and promote RPE maturation and integration as a functional tissue. Due to difficulties associated with animal protein-derived scaffolds, including sterility and pro-inflammatory responses, current practices favor the use of synthetic polymers, such as polycaprolactone (PCL), for generating nanofibrous scaffolds. In this study, we tested the hypothesis that plant protein-derived fibrous scaffolds can provide favorable conditions permissive for the maturation of RPE tissue sheets in vitro. Our natural, soy protein-derived nanofibrous scaffolds exhibited a J-shaped stress-strain curve that more closely resembled the mechanical properties of native tissues than PCL with significantly higher hydrophilicity of the natural scaffolds, favoring in vivo implantation. We then demonstrate that iRPE sheets growing on these soy protein scaffolds are equivalent to iRPE monolayers cultured on synthetic PCL nanofibrous scaffolds. Immunohistochemistry demonstrated RPE-like morphology and functionality with appropriate localization of RPE markers RPE65, PMEL17, Ezrin, and ZO1 and with anticipated histotypic polarization of vascular endothelial growth factor and pigment epithelium-derived growth factor as indicated by enzyme-linked immunosorbent assay. Scanning electron microscopy revealed dense microvilli on the cell surface and homogeneous tight junctional contacts between the cells. Finally, comparative transcriptome analysis in conjunction with principal component analysis demonstrated that iRPE on nanofibrous scaffolds, either natural or synthetic, matured more consistently than on nonfibrous substrates. Taken together, our studies suggest that the maturation of cultured iRPE sheets for subsequent clinical applications might benefit from the use of nanofibrous scaffolds generated from natural proteins. Impact statement Induced retinal pigment epithelium (iRPE) from patient-derived induced pluripotent stem cells (iPSCs) may yield powerful treatments of retinal diseases, including age-related macular degeneration. Recent studies, including early human clinical trials, demonstrate the importance of selecting appropriate biomaterial scaffolds to support tissue-engineered iRPE sheets during implantation. Electrospun scaffolds show particular promise due to their similarity to the structure of the native Bruch's membrane. In this study, we describe the use of electroprocessed nanofibrous soy protein scaffolds to generate polarized sheets of human iPSC-derived iRPE sheets. Our evaluation, including RNA-seq transcriptomics, indicates that these scaffolds are viable alternatives to scaffolds electrospun from synthetic polymers.
Collapse
Affiliation(s)
- Michael A Phelan
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Wilson
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles T Drinnan
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Florian Regent
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan A Gerstenhaber
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter I Lelkes
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9040313. [PMID: 32326494 PMCID: PMC7222183 DOI: 10.3390/antiox9040313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying some groups of rare diseases: Friedreich’s ataxia, diseases with neurodegeneration with brain iron accumulation, Charcot-Marie-Tooth as an example of rare neuromuscular disorders, inherited retinal dystrophies, progressive myoclonus epilepsies, and pediatric drug-resistant epilepsies. Despite the discrimination between cause and effect may not be easy on many occasions, all these conditions are Mendelian rare diseases that share oxidative stress as a common factor, and this may represent a potential target for therapies.
Collapse
|
11
|
Barone F, Muscatello LV, Ventrella D, Elmi A, Romagnoli N, Mandrioli L, Maya-Vetencourt JF, Bombardi C, Mete M, Sarli G, Benfenati F, Pertile G, Bacci ML. The porcine iodoacetic acid model of retinal degeneration: Morpho-functional characterization of the visual system. Exp Eye Res 2020; 193:107979. [PMID: 32087230 DOI: 10.1016/j.exer.2020.107979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
Porcine models of ophthalmological diseases are often used in pre-clinical translational studies due to pigs' similarities to humans. In particular, the iodoacetic acid (IAA) model of photoreceptor degeneration seems to mimic well the endstage phenotype of human pathologies as retinitis pigmentosa and age-related macular degeneration, with high potential for prosthesis/retinal devices testing. IAA is capable of inducing photoreceptor death by blockage of glycolysis, and its effects on the retina have been described. Nonetheless, up to date, literature lacks of a comprehensive morpho-functional characterization of the entire visual system of this model. This gap is particularly critical for prosthesis testing as inner retinal structures and optic pathways must be preserved to elicit cortical responses and restore vision. In this study, we investigated the functional and anatomical features of the visual system of IAA-treated pigs and compared them to control animals. IAA was administered intravenously at 12 mg/kg; control animals received saline solution (NaCl 0.9% w/v). Electrophysiological analyses included full-field (ffERGs) and pattern (PERGs) electroretinograms and flash visually evoked potentials (fVEPs). Histological evaluations were performed on the retina and the optic pathways and included thickness of the different retinal layers, ganglion cells count, and immunohistochemistry for microglial cells, macroglial cells, and oligodendrocytes. The histological results indicate that IAA treatment does not affect the morphology of the inner retina and optic pathways. Electrophysiology confirms the selective rod and partial cone degeneration, but is ambiguous as to the functionality of the optic pathways, seemingly preserved as indicated by the still detectable fVEPs. Overall, the work ameliorates the characterization of such rapid and cost-effective model, providing more strength and reliability for future pre-clinical translational trials.
Collapse
Affiliation(s)
- Francesca Barone
- National Eye Institute, National Institute of Health, 10 Center Dr, Bethesda, 20814, MD, USA; Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Via Don A. Sempreboni 5, Negrar, 37024, VR, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy.
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Josè Fernando Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Via Morego 30, Genova, 16163, GE, Italy; Department of Biology, University of Pisa, Via Alessandro Volta 4Bis, Pisa, 56126, PI, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Maurizio Mete
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Via Don A. Sempreboni 5, Negrar, 37024, VR, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Via Morego 30, Genova, 16163, GE, Italy; Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, Genova, 16132, GE, Italy
| | - Grazia Pertile
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Via Don A. Sempreboni 5, Negrar, 37024, VR, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| |
Collapse
|
12
|
Touahri Y, Dixit R, Kofoed RH, Mikloska K, Park E, Raeisossadati R, Markham-Coultes K, David LA, Rijal H, Zhao J, Lynch M, Hynynen K, Aubert I, Schuurmans C. Focused ultrasound as a novel strategy for noninvasive gene delivery to retinal Müller glia. Theranostics 2020; 10:2982-2999. [PMID: 32194850 PMCID: PMC7053200 DOI: 10.7150/thno.42611] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Müller glia are specialized retinal cells with stem cell properties in fish and frogs but not in mammals. Current efforts to develop gene therapies to activate mammalian Müller glia for retinal repair will require safe and effective delivery strategies for recombinant adeno-associated viruses (AAVs), vectors of choice for clinical translation. Intravitreal and subretinal injections are currently used for AAV gene delivery in the eye, but less invasive methods efficiently targeting Müller glia have yet to be developed. Methods: As gene delivery strategies have been more extensively studied in the brain, to validate our vectors, we initially compared the glial tropism of AAV-PHP.eB, an AAV9 that crosses the blood-brain and blood-retinal barriers, for its ability to drive fluorescent protein expression in glial cells in both the brain and retina. We then tested the glial transduction of AAV2/8-GFAP-mCherry, a virus that does not cross blood-brain and blood-retinal barriers, for its effectiveness in transducing Müller glia in murine retinal explants ex vivo. For in vivo assays we used larger rat eyes, performing invasive intravitreal injections, and non-invasive intravenous delivery using focused ultrasound (FUS) (pressure amplitude: 0.360 - 0.84 MPa) and microbubbles (Definity, 0.2 ml/kg). Results: We showed that AAV-PHP.eB carrying a ubiquitous promoter (CAG) and green fluorescent protein (GFP) reporter, readily crossed the blood-brain and blood-retinal barriers after intravenous delivery in mice. However, murine Müller glia did not express GFP, suggesting that they were not transduced by AAV-PHP.eB. We thus tested an AAV2/8 variant, which was selected based on its safety record in multiple clinical trials, adding a glial fibrillary acidic protein (GFAP) promoter and mCherry (red fluorescent protein) reporter. We confirmed the glial specificity of AAV2/8-GFAP-mCherry, showing effective expression of mCherry in astrocytes after intracranial injection in the mouse brain, and of Müller glia in murine retinal explants. For in vivo experiments we switched to rats because of their larger size, injecting AAV2/8-GFAP-mCherry intravitreally, an invasive procedure, demonstrating passage across the inner limiting membrane, leading to Müller glia transduction. We then tested an alternative non-invasive delivery approach targeting a different barrier - the inner blood-retinal-barrier, applying focused ultrasound (FUS) to the retina after intravenous injection of AAV2/8 and microbubbles in rats, using magnetic resonance imaging (MRI) for FUS targeting. FUS permeabilized the rat blood-retinal-barrier and allowed the passage of macromolecules to the retina (Evans blue, IgG, IgM), with minimal extravasation of platelets and red blood cells. Intravenous injection of microbubbles and AAV2/8-GFAP-mCherry followed by FUS resulted in mCherry expression in rat Müller glia. However, systemic delivery of AAV2/8 also had off-target effects, transducing several murine peripheral organs, particularly the liver. Conclusions: Retinal permeabilisation via FUS in the presence of microbubbles is effective for delivering AAV2/8 across the inner blood-retinal-barrier, targeting Müller glia, which is less invasive than intravitreal injections that bypass the inner limiting membrane. However, implementing FUS in the clinic will require a comprehensive consideration of any off-target tropism of the AAV in peripheral organs, combined ideally, with the development of Müller glia-specific promoters.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rikke Hahn Kofoed
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kristina Mikloska
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - EunJee Park
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Reza Raeisossadati
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kelly Markham-Coultes
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hibo Rijal
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jiayi Zhao
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Madelaine Lynch
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|