1
|
Wang B, Qin Y, Wu Q, Li X, Xie D, Zhao Z, Duan S. mTOR Signaling Pathway Regulates the Release of Proinflammatory Molecule CCL5 Implicated in the Pathogenesis of Autism Spectrum Disorder. Front Immunol 2022; 13:818518. [PMID: 35422816 PMCID: PMC9002353 DOI: 10.3389/fimmu.2022.818518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex pervasive neurodevelopmental disorder and neuroinflammation may contribute to the pathogenesis of ASD. However, the exact mechanisms of abnormal release of proinflammatory mediators in ASD remain poorly understood. This study reports elevated plasma levels of the proinflammatory chemokine (C-C motif) ligand 5 (CCL5) in children with ASD, suggesting an aberrant inflammatory response appearing in the development of ASD. Mining of the expression data of brain or blood tissue from individuals with ASD reveals that mTOR signaling is aberrantly activated in ASD patients. Our in vitro study shows that suppression of mTOR reduces the gene expression and release of CCL5 from human microglia, supporting that CCL5 expression is regulated by mTOR activity. Furthermore, bacterial lipopolysaccharide (LPS)-induced CCL5 expression can be counteracted by siRNA against NF-κB, suggests a determining role of NF-κB in upregulating CCL5 expression. However, a direct regulatory relationship between the NF-κB element and the mTOR signaling pathway was not observed in rapamycin-treated cells. Our results show that the phosphorylated CREB can be induced to suppress CCL5 expression by outcompeting NF-κB in binding to CREB-binding protein (CREBBP) once the mTOR signaling pathway is inhibited. We propose that the activation of mTOR signaling in ASD may induce the suppression of phosphorylation of CREB, which in turn results in the increased binding of CREBBP to NF-κB, a competitor of phosphorylated CREB to drive expression of CCL5. Our study sheds new light on the inflammatory mechanisms of ASD and paves the way for the development of therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Baojiang Wang
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.,Laboratory of Medical Genetics, Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yueyuan Qin
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Qunyan Wu
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xi Li
- Laboratory of Medical Genetics, Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Dongying Xie
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Shan Duan
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
2
|
Absolute quantitative analysis of endogenous neurotransmitters and amino acids by liquid chromatography-tandem mass spectrometry combined with multidimensional adsorption and collision energy defect. J Chromatogr A 2021; 1638:461867. [PMID: 33485029 DOI: 10.1016/j.chroma.2020.461867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 01/06/2023]
Abstract
Considering that neurotransmitters (NTs) and amino acids (AAs) exert pivotal roles in various neurological diseases, global detection of these endogenous metabolites is of great significance for the treatment of nervous system diseases. Herein, a workflow that could cope with various challenges was proposed to establish an extendable all-in-one injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for analyzing these small molecular metabolites with high coverage. To obtain a qualified blank biological matrix for the preparation of standard curves and quality control samples, different absorption solvents, including activated carbon (AC), calcite (Cal) and montmorillonite (Mnt) were systematically evaluated for efficient absorption of endogenous substances with minimum residue. We also firstly proposed a "Collision Energy Defect (CED)" strategy to solve the huge difference of mass signal strength caused by different properties and concentrations of 11 NTs and 17 AAs. The quantitative results were validated by LC-MS/MS. Sensitivity, accuracy, and recovery meeting generally accepted bioanalytic guidelines were observed in a concentration span of at least 100 to 500 times for each analyte. Then the temporal changes of intracerebral and peripheral NTs and AAs in ischemic stroke model and sham operated rats were successfully produced and compared using the described method. All these results suggested that the currently developed assay was powerful enough to simultaneously monitor a large panel of endogenous small molecule metabolites, which was expected to be widely used in the research of various diseases mediated by NTs and AAs.
Collapse
|