1
|
D’Angiolini S, Lui M, Mazzon E, Calabrò M. Network Analysis Performed on Transcriptomes of Parkinson's Disease Patients Reveals Dysfunction in Protein Translation. Int J Mol Sci 2024; 25:1299. [PMID: 38279299 PMCID: PMC10816150 DOI: 10.3390/ijms25021299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra region of the brain. The hallmark pathological feature of PD is the accumulation of misfolded proteins, leading to the formation of intracellular aggregates known as Lewy bodies. Recent data evidenced how disruptions in protein synthesis, folding, and degradation are events commonly observed in PD and may provide information on the molecular background behind its etiopathogenesis. In the present study, we used a publicly available transcriptomic microarray dataset of peripheral blood of PD patients and healthy controls (GSE6613) to investigate the potential dysregulation of elements involved in proteostasis-related processes at the transcriptomic level. Our bioinformatics analysis revealed 375 differentially expressed genes (DEGs), of which 281 were down-regulated and 94 were up-regulated. Network analysis performed on the observed DEGs highlighted a cluster of 36 elements mainly involved in the protein synthesis processes. Different enriched ontologies were related to translation initiation and regulation, ribosome structure, and ribosome components nuclear export. Overall, this data consistently points to a generalized impairment of the translational machinery and proteostasis. Dysregulation of these mechanics has been associated with PD pathogenesis. Understanding the precise regulation of such processes may shed light on the molecular mechanisms of PD and provide potential data for early diagnosis.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | | |
Collapse
|
2
|
Sandoval-Pistorius SS, Gerson JE, Liggans N, Ryou JH, Oak K, Li X, Negron-Rios KY, Fischer S, Barsh H, Crowley EV, Skinner ME, Sharkey LM, Barmada SJ, Paulson HL. Ubiquilin-2 regulates pathological alpha-synuclein. Sci Rep 2023; 13:293. [PMID: 36609661 PMCID: PMC9823102 DOI: 10.1038/s41598-022-26899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
The key protein implicated in Parkinson's disease and other synucleinopathies is α-synuclein, and a post-translationally modified form of the protein, phosphorylated at serine 129 (pS129), is a principal component in Lewy bodies, a pathological hallmark of PD. While altered proteostasis has been implicated in the etiology of Parkinson's disease, we still have a limited understanding of how α-synuclein is regulated in the nervous system. The protein quality control protein Ubiquilin-2 (UBQLN2) is known to accumulate in synucleinopathies, but whether it directly regulates α-synuclein is unknown. Using cellular and mouse models, we find that UBQLN2 decreases levels of α-synuclein, including the pS129 phosphorylated isoform. Pharmacological inhibition of the proteasome revealed that, while α-synuclein may be cleared by parallel and redundant quality control pathways, UBQLN2 preferentially targets pS129 for proteasomal degradation. Moreover, in brain tissue from human PD and transgenic mice expressing pathogenic α-synuclein (A53T), native UBQLN2 becomes more insoluble. Collectively, our studies support a role for UBQLN2 in directly regulating pathological forms of α-synuclein and indicate that UBQLN2 dysregulation in disease may contribute to α-synuclein-mediated toxicity.
Collapse
Affiliation(s)
- Stephanie S. Sandoval-Pistorius
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA ,grid.214458.e0000000086837370Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109 USA
| | - Julia E. Gerson
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Nyjerus Liggans
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Jaimie H. Ryou
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Kulin Oak
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Xingli Li
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Keyshla Y. Negron-Rios
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Svetlana Fischer
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Henry Barsh
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Emily V. Crowley
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Mary E. Skinner
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Lisa M. Sharkey
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Sami J. Barmada
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Henry L. Paulson
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| |
Collapse
|
3
|
Wood SA, Hains PG, Muller A, Hill M, Premarathne S, Murtaza M, Robinson PJ, Mellick GD, Sykes AM. Proteomic profiling of idiopathic Parkinson's disease primary patient cells by SWATH-MS. Proteomics Clin Appl 2022; 16:e2200015. [PMID: 35579911 PMCID: PMC9787017 DOI: 10.1002/prca.202200015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. It is generally diagnosed clinically after the irreversible loss of dopaminergic neurons and no general biomarkers currently exist. To gain insight into the underlying cellular causes of PD we aimed to quantify the proteomic differences between healthy control and PD patient cells. EXPERIMENTAL DESIGN Sequential Window Acquisition of all THeoretical Mass Spectra was performed on primary cells from healthy controls and PD patients. RESULTS In total, 1948 proteins were quantified and 228 proteins were significantly differentially expressed in PD patient cells. In PD patient cells, we identified seven significantly increased proteins involved in the unfolded protein response (UPR) and focused on cells with high and low amounts of PDIA6 and HYOU1. We discovered that PD patients with high amounts of PDIA6 and HYOU1 proteins were more sensitive to endoplasmic reticulum stress, in particular to tunicamycin. Data is available via ProteomeXchange with identifier PXD030723. CONCLUSIONS AND CLINICAL RELEVANCE This data from primary patient cells has uncovered a critical role of the UPR in patients with PD and may provide insight to the underlying cellular dysfunctions in these patients.
Collapse
Affiliation(s)
- Stephen A. Wood
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Peter G. Hains
- Cell Signalling UnitChildren's Medical Research InstituteThe University of SydneyWestmeadNSWAustralia
| | | | - Melissa Hill
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Susitha Premarathne
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Mariyam Murtaza
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Phillip J. Robinson
- Cell Signalling UnitChildren's Medical Research InstituteThe University of SydneyWestmeadNSWAustralia
| | - George D. Mellick
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Alex M. Sykes
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| |
Collapse
|
4
|
Genetically Targeted Clinical Trials in Parkinson's Disease: Learning from the Successes Made in Oncology. Genes (Basel) 2021; 12:genes12101529. [PMID: 34680924 PMCID: PMC8535305 DOI: 10.3390/genes12101529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical trials in neurodegenerative disorders have been associated with high rate of failures, while in oncology, the implementation of precision medicine and focus on genetically defined subtypes of disease and targets for drug development have seen an unprecedented success. With more than 20 genes associated with Parkinson’s disease (PD), most of which are highly penetrant and often cause early onset or atypical signs and symptoms, and an increasing understanding of the associated pathophysiology culminating in dopaminergic neurodegeneration, applying the technologies and designs into the field of neurodegeneration seems a logical step. This review describes some of the methods used in oncology clinical trials and some attempts in Parkinson’s disease and the potential of further implementing genetics, biomarkers and smart clinical trial designs in this disease area.
Collapse
|
5
|
Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2020; 16:255-274. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|