1
|
Lan X, Guo L, Hu C, Zhang Q, Deng J, Wang Y, Chen ZJ, Yan J, Li Y. Fibronectin mediates activin A-promoted human trophoblast migration and acquisition of endothelial-like phenotype. Cell Commun Signal 2024; 22:61. [PMID: 38263146 PMCID: PMC10807102 DOI: 10.1186/s12964-023-01463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND During human early placentation, a proportion of extravillous trophoblasts (EVTs) migrate to the maternal decidua, differentiating into endovascular EVTs to remodel spiral arteries and ensure the establishment of blood circulation at the maternal-fetal interface. Inadequate EVT migration and endovascular differentiation are closely associated with adverse pregnancy outcomes such as miscarriage. Activin A and fibronectin are both secretory molecules abundantly expressed at the maternal-fetal interface. Activin A has been reported to regulate EVT biological functions. However, whether fibronectin mediates activin A-promoted EVT migration and acquisition of endothelial-like phenotype as well as the underlying molecular mechanisms remain unknown. Additionally, the role of fibronectin in pregnancy establishment and maintenance warrants further investigation. METHODS Primary and immortalized (HTR8/SVneo) human EVTs were used as in vitro study models. Cultured human first-trimester chorionic villous explants were utilized for ex vivo validation. A local fibronectin knockdown model in ICR mouse uteri, achieved by nonviral in vivo transfection with small interfering RNA (siRNA) targeting fibronectin 1 (si-Fn1), was employed to explore the roles of fibronectin in the establishment and maintenance of early pregnancy. RESULTS Our results showed that activin A treatment significantly induced fibronectin 1 (FN1) mRNA expression and fibronectin protein production, which is essential for human trophoblast migration and endothelial-like tube formation. Both basal and activin A-upregulated fibronectin expression were abolished by the TGF-β type I receptor inhibitor SB431542 or siRNA-mediated knockdown of activin receptor-like kinase (ALK4) or SMAD4. Moreover, activin A-increased trophoblast migration and endothelial-like tube formation were attenuated following the depletion of fibronectin. Fibronectin knockdown via intrauterine siRNA administration reduced CD31 and cytokeratin 8 (CK8) expression at the maternal-fetal interface, resulting in a decrease in the number of implantation sites and embryos. CONCLUSIONS Our study demonstrates that activin A promotes trophoblast cell migration and acquisition of endothelial-like phenotype via ALK4-SMAD2/3-SMAD4-mediated fibronectin upregulation. Furthermore, through a local fibronectin knockdown model in mouse uteri, we found that the absence of fibronectin at the maternal-fetal interface impedes endovascular migration of trophoblasts and decidual vascularization, thereby interfering with early embryo implantation and the maintenance of pregnancy. These findings provide novel insights into placental development during early pregnancy establishment and contribute to the advancement of therapeutic approaches for managing pregnancy complications related to trophoblast dysfunction.
Collapse
Affiliation(s)
- Xiangxin Lan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Ling Guo
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Cuiping Hu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Qian Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Jianye Deng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Yufeng Wang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
| | - Junhao Yan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China.
| | - Yan Li
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Gao J, Guo W, Li R, Qiao J, Long X. The impact of fibronectin knockout on invasion and migration of endometrial cell in adenomyosis. Heliyon 2023; 9:e19674. [PMID: 37809570 PMCID: PMC10558947 DOI: 10.1016/j.heliyon.2023.e19674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
The present study aimed to investigate the potential effect of fibronectin (FN) in adenomyosis progression. Small guide RNAs were designed to knock down FN expression in Ishikawa cells. The impact of FN on the proliferation, apoptosis, migration, and invasion of the cells was assessed. Cell proliferation was detected using a Celigo Imaging Cytometer system; apoptosis was quantified by flow cytometry; and cell migration and invasion were investigated via transwell assays. Cell proliferation was markedly suppressed in the FN knockout (KO) group compared with the control group, while apoptosis significantly increased. The levels of cell migration and invasion in the KO group were significantly decreased compared with the control group. Our study revealed that downregulation of FN expression is likely to restrain cell proliferation, migration, and invasion in endometrial cells in adenomyosis.
Collapse
Affiliation(s)
- Jiangman Gao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Wei Guo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Xiaoyu Long
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| |
Collapse
|
3
|
Hall RC, Vaidya AM, Schiemann WP, Pan Q, Lu ZR. RNA-Seq Analysis of Extradomain A and Extradomain B Fibronectin as Extracellular Matrix Markers for Cancer. Cells 2023; 12:cells12050685. [PMID: 36899821 PMCID: PMC10000746 DOI: 10.3390/cells12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Alternatively spliced forms of fibronectin, called oncofetal fibronectin, are aberrantly expressed in cancer, with little to no expression in normal tissue, making them attractive biomarkers to exploit for tumor-targeted therapeutics and diagnostics. While prior studies have explored oncofetal fibronectin expression in limited cancer types and limited sample sizes, no studies have performed a large-scale pan-cancer analysis in the context of clinical diagnostics and prognostics to posit the utility of these biomarkers across multiple cancer types. In this study, RNA-Seq data sourced from the UCSC Toil Recompute project were extracted and analyzed to determine the correlation between the expression of oncofetal fibronectin, including extradomain A and extradomain B fibronectin, and patient diagnosis and prognosis. We determined that oncofetal fibronectin is significantly overexpressed in most cancer types relative to corresponding normal tissues. In addition, strong correlations exist between increasing oncofetal fibronectin expression levels and tumor stage, lymph node activity, and histological grade at the time of diagnosis. Furthermore, oncofetal fibronectin expression is shown to be significantly associated with overall patient survival within a 10-year window. Thus, the results presented in this study suggest oncofetal fibronectin as a commonly upregulated biomarker in cancer with the potential to be used for tumor-selective diagnosis and treatment applications.
Collapse
Affiliation(s)
- Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amita M. Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Quintin Pan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0187; Fax: +1-216-368-4969
| |
Collapse
|
4
|
Cheng C, Liu L, Bao Y, Yi J, Quan W, Xue Y, Sun L, Zhang Y. SUVA: splicing site usage variation analysis from RNA-seq data reveals highly conserved complex splicing biomarkers in liver cancer. RNA Biol 2021; 18:157-171. [PMID: 34152934 DOI: 10.1080/15476286.2021.1940037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most of the current alternative splicing (AS) analysis tools are powerless to analyse complex splicing. To address this, we developed SUVA (Splice sites Usage Variation Analysis) that decomposes complex splicing events into five types of splice junction pairs. By analysing real and simulated data, SUVA showed higher sensitivity and accuracy in detecting AS events than the compared methods. Notably, SUVA detected extensive complex AS events and screened out 69 highly conserved and dominant AS events associated with cancer. The cancer-associated complex AS events in FN1 and the co-regulated RNA-binding proteins were significantly correlated with patient survival.
Collapse
Affiliation(s)
- Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei China.,Center for Genome Analysis, ABLife Inc., Wuhan, Hubei China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Weili Quan
- ABLife BioBigData Institute, Wuhan, Hubei China
| | - Yaqiang Xue
- ABLife BioBigData Institute, Wuhan, Hubei China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei China.,Center for Genome Analysis, ABLife Inc., Wuhan, Hubei China
| |
Collapse
|
5
|
Wang X, Wang J, Wu J. Emerging roles for HMGA2 in colorectal cancer. Transl Oncol 2020; 14:100894. [PMID: 33069103 PMCID: PMC7563012 DOI: 10.1016/j.tranon.2020.100894] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
HMGA2 (High Mobility Group AT-hook 2) has been reported to promote colorectal cancer (CRC) development by regulating the transcription of target genes. It participates in nearly all aspects of cellular processes, including cell transformation, proliferation, apoptosis, senescence, metastasis, epithelial-to-mesenchymal transition (EMT), DNA repair and stem cell self-renewal. In the past decades, a group of downstream targets and binding partners have been identified in a wide range of cancers. Our findings of HMGA2 as a key factor in the MDM2/p53, IL11/STAT3 and Wnt/β-catenin signaling pathways prompt us to summarize current advances in the functional and molecular basis of HMGA2 in CRC. In this review, we address the roles of HMGA2 in the oncogenic networks of CRC based on recent advances. We review its aberrant expression, explore underlying mechanisms, discuss its pro-tumorigenic effects, and highlight promising small-molecule inhibitors based on targeting HMGA2 here. However, the understanding of HMGA2 in CRC progression is still elusive, thus we also discuss the future perspectives in this review. Collectively, this review provides novel insights into the oncogenic properties of HMGA2, which has potential implications in the diagnosis and treatment of CRC. HMGA2 promotes colorectal cancer (CRC) development by regulating the transcriptions of target genes. Circulating cell-free HMGA2 mRNA has been identified as a potential screening marker in CRC. HMGA2 appears to be a key factor in the networks of MDM2/p53, IL11/STAT3 and Wnt/β-catenin signaling pathways in CRC. Many agents and siRNAs serve as potential therapeutic approaches by targeting HMGA2 for the treatment of CRC. Deciphering HMGA2-mediated machinery helps to conceive effective therapy strategies and develop novel inhibitors in CRC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathology & Pathophysiology, Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jingjing Wu
- Department of Pathology & Pathophysiology, Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|