1
|
Cheng H, Wang J, Zhao Y, Hou X, Ling F, Wang Y, Cao Y. Deciphering the role of heat shock protein HSPA1L: biomarker discovery and prognostic insights in Parkinson's disease and glioma. SLAS Technol 2024; 29:100212. [PMID: 39454876 DOI: 10.1016/j.slast.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Heat shock proteins (HSPs) play a critical role in cellular stress responses and have been implicated in numerous diseases, including Parkinson's disease (PD) and various cancers. Understanding the differential expression and functional implications of HSPs in these conditions is crucial for identifying potential therapeutic targets and biomarkers for diagnosis and prognosis. METHODS We utilized combined datasets (GSE6613 and GSE72267) to identify and analyze the heat shock-related genes differentially expressed in PD. Gene Set Variation Analysis (GSVA) was performed to explore functional profiles, while LASSO regression was employed to screen potential PD biomarkers. In glioma, prognostic value, immune infiltration, and pathway enrichment associated with HSPA1L gene expression were assessed via Kaplan-Meier plots, ssGSEA, and enrichment analyses. RESULTS In PD, we identified 17 differentially expressed HSPs. Enrichment analysis revealed significant pathways related to protein homeostasis and cellular stress responses. LASSO regression pinpointed 12 genes, including HSPA1L, as significant markers for PD, with nomogram and calibration plots indicating predictive accuracy. Stratification based on HSPA1L expression in PD highlighted differentially active biological processes, immune responses, and metabolic disruptions. In the pan-cancer analysis, HSPA1L showed variable expression across cancer types and a significant correlation with patient survival and immune infiltration. In glioma, low HSPA1L expression was associated with worse overall survival, distinct immune infiltration patterns, and altered pathway activities. CONCLUSION This integrative study reveals the substantial role of HSPs, especially HSPA1L, in the pathogenesis and prognosis of PD and glioma. Our findings offer new perspectives on the molecular mechanisms underlying these diseases and propose HSPA1L as a potential prognostic biomarker and a target for therapeutic intervention.
Collapse
Affiliation(s)
- Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000.
| | - Jing Wang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000; Medicine Section, The Third People's Hospital of Danyang, Jiangsu, Danyang, China, 212300
| | - Yingjie Zhao
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000; Cardiovascular Medicine, The Third People's Hospital of Danyang, Jiangsu, Danyang, China, 212300
| | - Xiaoli Hou
- Yangzhou Vocational University Medical College, Jiangsu, Yangzhou, China, 225000
| | - Fang Ling
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000; Otorhinolaryngology, The Third People's Hospital of Danyang, Jiangsu, Danyang, China, 212300
| | - Yixia Wang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000
| | - Yasen Cao
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000
| |
Collapse
|
2
|
Zhang K, Duan M, Shan L, Zheng L, Liu J. HIP is involved in NaCl and endoplasmic reticulum stress resistance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109226. [PMID: 39447243 DOI: 10.1016/j.plaphy.2024.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Heat shock protein 70 (HSP70)-interacting proteins (HIPs) have been studied in animals. HIPs perform diverse cellular functions, ranging from alleviating stress to suppressing the formation of insoluble protein, but how their orthologs function in plants is less known. This study shows that Arabidopsis HIP is a cytosolic and nuclear protein associated with HSP70. The hip mutants showed compromised tolerance to NaCl and endoplasmic reticulum (ER) stress, although they grew normally under standard growth conditions. Furthermore, hip mutants presented a decreased HSP70 level compared with the wild type under NaCl and ER stress conditions. These findings suggest the involvement of HIP in NaCl and ER stress tolerance.
Collapse
Affiliation(s)
- Kaiyue Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China; School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
| | - Meijie Duan
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Lele Shan
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Lina Zheng
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Jian Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
3
|
Geng Y, Gai Y, Zhang Y, Zhao S, Jiang A, Li X, Deng K, Zhang F, Tan L, Song L. Genome-Wide Identification and Interaction Analysis of Turbot Heat Shock Protein 40 and 70 Families Suggest the Mechanism of Chaperone Proteins Involved in Immune Response after Bacterial Infection. Int J Mol Sci 2024; 25:7963. [PMID: 39063205 PMCID: PMC11277129 DOI: 10.3390/ijms25147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.
Collapse
Affiliation(s)
- Yuanwei Geng
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Yuxuan Gai
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
- Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanping Zhang
- College of Entrepreneurship and Innovation, Qingdao Agricultural University, Qingdao 266109, China
| | - Shengwei Zhao
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Anlan Jiang
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Xueqing Li
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Kaiqing Deng
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Fuxuan Zhang
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Lingling Tan
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Lin Song
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
- Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
5
|
Wang J, Zhang J, Guo Z, Hua H, Zhang H, Liu Y, Jiang Y. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155156. [PMID: 37897861 DOI: 10.1016/j.phymed.2023.155156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Liver cancer is one of common types of cancer with poor prognosis and limited therapies. Heat shock proteins (HSP) are molecular chaperones that have important roles in tumorigenesis, and emerging as therapeutic targets. Artemisinin and rhein are natural agents from Artemisia annua L. and Rheum undulatum L., respectively. Both rhein and artemisinin have anticancer effects; however, the molecular targets of rhein remain to be identified. It is also unclear whether rhein can synergize with artemisinin derivatives to inhibit liver cancer. PURPOSE We aim to identify the targets of rhein in the treatment of hepatocarcinoma and determine the effects of combining rhein and artemisinin derivatives on liver cancer cells. METHODS The targets of rhein were detected by mass spectrometry and validated by rhein-proteins interaction assays. The effects of rhein on the chaperone activity of HSP72/HSC70/GRP78 were determined by luciferase refolding assays. Cell viability and apoptosis were determined by CCK8 and flow cytometry assays. For in vivo study, xenograft tumor models were established and treated with rhein and artesunate. Tumor growth was monitored regularly. RESULTS Mass spectrometry analysis of rhein-binding proteins in HepG2 cells revealed that HSP72, HSC70 and GRP78 were more profoundly pulled down by rhein-crosslinked sepharose 4B beads compared to the control beads. Further experiments demonstrated that rhein directly interacted with HSP72/HSC70/GRP78 proteins, and inhibit their activity of refolding denatured luciferase. Meanwhile, rhein induced proteasomal degradation of HIF1α and β-catenin. Artesunate or dihydroartemisinin in combination with knockdown of both HSP72 and HSC70 significantly inhibited cell viability. The HSP70/HSC70/GRP78 inhibitors VER-155,008 and rhein phenocopied HSP72/HSC70 knockdown, synergizing with artesunate or dihydroartemisinin to inhibit hepatocarcinoma cell viability. Combinatorial treatment with rhein and artemisinin derivatives significantly induced hepatocarcinoma cell apoptosis, and inhibited tumor growth in vivo. CONCLUSIONS The current study demonstrates that rhein is a novel HSP72/HSC70/GRP78 inhibitor that suppresses the chaperone activity of HSP70s. Dual inhibition of HSP72 and HSC70 can enhance the sensitivity of hepatocarcinoma cells to artemisinin derivatives. Combined treatment with artemisinin derivative and rhein significantly inhibits hepatocarcinoma. Artemisinin derivatives in combination with dual inhibition of HSP72 and HSC70 represents a new approach to improve cancer therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, China
| | - Jin Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Zeyu Guo
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, China
| | - Hongying Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yongliang Liu
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yangfu Jiang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China.
| |
Collapse
|
6
|
Roterman I, Stapor K, Konieczny L. Ab initio protein structure prediction: the necessary presence of external force field as it is delivered by Hsp40 chaperone. BMC Bioinformatics 2023; 24:418. [PMID: 37932669 PMCID: PMC10629080 DOI: 10.1186/s12859-023-05545-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The aqueous environment directs the protein folding process towards the generation of micelle-type structures, which results in the exposure of hydrophilic residues on the surface (polarity) and the concentration of hydrophobic residues in the center (hydrophobic core). Obtaining a structure without a hydrophobic core requires a different type of external force field than those generated by a water. The examples are membrane proteins, where the distribution of hydrophobicity is opposite to that of water-soluble proteins. Apart from these two extreme examples, the process of protein folding can be directed by chaperones, resulting in a structure devoid of a hydrophobic core. RESULTS The current work presents such example: DnaJ Hsp40 in complex with alkaline phosphatase PhoA-U (PDB ID-6PSI)-the client molecule. The availability of WT form of the folding protein-alkaline phosphatase (PDB ID-1EW8) enables a comparative analysis of the structures: at the stage of interaction with the chaperone and the final, folded structure of this biologically active protein. The fuzzy oil drop model in its modified FOD-M version was used in this analysis, taking into account the influence of an external force field, in this case coming from a chaperone. CONCLUSIONS The FOD-M model identifies the external force field introduced by chaperon influencing the folding proces. The identified specific external force field can be applied in Ab Initio protein structure prediction as the environmental conditioning the folding proces.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Medyczna 7, 30-688, Krakow, Poland.
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University - Medical College, Kopernika 7, 31-034, Krakow, Poland
| |
Collapse
|
7
|
Abayev-Avraham M, Salzberg Y, Gliksberg D, Oren-Suissa M, Rosenzweig R. DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Nat Commun 2023; 14:7066. [PMID: 37923706 PMCID: PMC10624832 DOI: 10.1038/s41467-023-42735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Molecular chaperones are essential cellular components that aid in protein folding and preventing the abnormal aggregation of disease-associated proteins. Mutations in one such chaperone, DNAJB6, were identified in patients with LGMDD1, a dominant autosomal disorder characterized by myofibrillar degeneration and accumulations of aggregated protein within myocytes. The molecular mechanisms through which such mutations cause this dysfunction, however, are not well understood. Here we employ a combination of solution NMR and biochemical assays to investigate the structural and functional changes in LGMDD1 mutants of DNAJB6. Surprisingly, we find that DNAJB6 disease mutants show no reduction in their aggregation-prevention activity in vitro, and instead differ structurally from the WT protein, affecting their interaction with Hsp70 chaperones. While WT DNAJB6 contains a helical element regulating its ability to bind and activate Hsp70, in LGMDD1 disease mutants this regulation is disrupted. These variants can thus recruit and hyperactivate Hsp70 chaperones in an unregulated manner, depleting Hsp70 levels in myocytes, and resulting in the disruption of proteostasis. Interfering with DNAJB6-Hsp70 binding, however, reverses the disease phenotype, suggesting future therapeutic avenues for LGMDD1.
Collapse
Affiliation(s)
- Meital Abayev-Avraham
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Dar Gliksberg
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel.
| |
Collapse
|
8
|
Almaazmi SY, Kaur RP, Singh H, Blatch GL. The Plasmodium falciparum exported J domain proteins fine-tune human and malarial Hsp70s: pathological exploitation of proteostasis machinery. Front Mol Biosci 2023; 10:1216192. [PMID: 37457831 PMCID: PMC10349383 DOI: 10.3389/fmolb.2023.1216192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular proteostasis requires a network of molecular chaperones and co-chaperones, which facilitate the correct folding and assembly of other proteins, or the degradation of proteins misfolded beyond repair. The function of the major chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), is regulated by a cohort of co-chaperone proteins. The J domain protein (JDP) family is one of the most diverse co-chaperone families, playing an important role in functionalizing the Hsp70 chaperone system to form a powerful protein quality control network. The intracellular malaria parasite, Plasmodium falciparum, has evolved the capacity to invade and reboot mature human erythrocytes, turning them into a vehicles of pathology. This process appears to involve the harnessing of both the human and parasite chaperone machineries. It is well known that malaria parasite-infected erythrocytes are highly enriched in functional human Hsp70 (HsHsp70) and Hsp90 (HsHsp90), while recent proteomics studies have provided evidence that human JDPs (HsJDPs) may also be enriched, but at lower levels. Interestingly, P. falciparum JDPs (PfJDPs) are the most prominent and diverse family of proteins exported into the infected erythrocyte cytosol. We hypothesize that the exported PfJPDs may be an evolutionary consequence of the need to boost chaperone power for specific protein folding pathways that enable both survival and pathogenesis of the malaria parasite. The evidence suggests that there is an intricate network of PfJDP interactions with the exported malarial Hsp70 (PfHsp70-x) and HsHsp70, which appear to be important for the trafficking of key malarial virulence factors, and the proteostasis of protein complexes of human and parasite proteins associated with pathology. This review will critically evaluate the current understanding of the role of exported PfJDPs in pathological exploitation of the proteostasis machinery by fine-tuning the chaperone properties of both human and malarial Hsp70s.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Rupinder P. Kaur
- The Department of Chemistry, Guru Nanak Dev University College Verka, Amritsar, Punjab, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
9
|
Wang Y, Abazid A, Badendieck S, Mustea A, Stope MB. Impact of Non-Invasive Physical Plasma on Heat Shock Protein Functionality in Eukaryotic Cells. Biomedicines 2023; 11:biomedicines11051471. [PMID: 37239142 DOI: 10.3390/biomedicines11051471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, biomedical research has increasingly investigated physical plasma as an innovative therapeutic approach with a number of therapeutic biomedical effects. It is known from radiation and chemotherapy that these applications can lead to the induction and activation of primarily cytoprotective heat shock proteins (HSP). HSP protect cells and tissues from physical, (bio)chemical, and physiological stress and, ultimately, along with other mechanisms, govern resistance and treatment failure. These mechanisms are well known and comparatively well studied in drug therapy. For therapies in the field of physical plasma medicine, however, extremely little data are available to date. In this review article, we provide an overview of the current studies on the interaction of physical plasma with the cellular HSP system.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Abazid
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Steffen Badendieck
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
10
|
Echtenkamp FJ, Ishida R, Rivera-Marquez GM, Maisiak M, Johnson OT, Shrimp JH, Sinha A, Ralph SJ, Nisbet I, Cherukuri MK, Gestwicki JE, Neckers LM. Mitoribosome sensitivity to HSP70 inhibition uncovers metabolic liabilities of castration-resistant prostate cancer. PNAS NEXUS 2023; 2:pgad115. [PMID: 37091547 PMCID: PMC10118397 DOI: 10.1093/pnasnexus/pgad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The androgen receptor is a key regulator of prostate cancer and the principal target of current prostate cancer therapies collectively termed androgen deprivation therapies. Insensitivity to these drugs is a hallmark of progression to a terminal disease state termed castration-resistant prostate cancer. Therefore, novel therapeutic options that slow progression of castration-resistant prostate cancer and combine effectively with existing agents are in urgent need. We show that JG-98, an allosteric inhibitor of HSP70, re-sensitizes castration-resistant prostate cancer to androgen deprivation drugs by targeting mitochondrial HSP70 (HSPA9) to suppress aerobic respiration. Rather than impacting androgen receptor stability as previously described, JG-98's primary effect is inhibition of mitochondrial translation, leading to disruption of electron transport chain activity. Although functionally distinct from HSPA9 inhibition, direct inhibition of the electron transport chain with a complex I or II inhibitor creates a similar physiological state capable of re-sensitizing castration-resistant prostate cancer to androgen deprivation therapies. These data identify a significant role for HspA9 in mitochondrial ribosome function and highlight an actionable metabolic vulnerability of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Frank J Echtenkamp
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ryo Ishida
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Genesis M Rivera-Marquez
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Marisa Maisiak
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Oleta T Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonathan H Shrimp
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Arnav Sinha
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Ian Nisbet
- Cancure Ltd,Broadbeach, Queensland 4218, Australia
| | - Murali Krishna Cherukuri
- Biophysics Section, Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Adah AS, Ayo JO, Adah DA, Nwonuma CO, Lawal TA. Molecular docking and experimental validation of the effect of ergothioneine on heat shock protein-70 following endurance exercise by Arabian stallions. BMC Vet Res 2023; 19:27. [PMID: 36717851 PMCID: PMC9887863 DOI: 10.1186/s12917-023-03584-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Exercise-induced oxidative stress is a challenge in equine sports. This study aims at determining the effects of ergothioneine on heat shock protein-70 (HSP-70) following the stress of an endurance exercise of 30 km by Arabian stallions. Molecular docking was also done to investigate the interaction between the ligand ergothioneine and heat shock protein-70 using sulfogalactosylceramide and sulfogalactoglycerolipid as standards. The study involved a total of 18 clinically healthy stallions, with an average age of 6.7 ± 2.4 years and an average weight of 411.54 ± 12.46 kg. Only clinically healthy stallions were selected as subjects. The stallions were divided into two groups of nine stallions each. Group I (ERGX) was administered ergothioneine at a dose of 0.02 mg/kg once daily orally for four weeks while group II (ERGN) was not administered ergothioneine. The activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase were determined in the two groups before and post-exercise. The concentrations of malondialdehyde and HSP-70 were also determined. RESULTS The results obtained showed that the activities of the antioxidant enzymes and concentration of HSP-70 were higher (P < 0.05) in the ERGX group compared to the ERGN group. The concentration of malondialdehyde was however lower in the ERGX group. Following molecular docking, ergothioneine and the selected standards have common amino acids at the site of interaction with the target protein (HSP-70) suggesting that ergothioneine may have a modulatory effect on the synthesis of HSP-70. CONCLUSION The results obtained indicated that ergothioneine modulated the synthesis of HSP-70 and the biomarkers of oxidative stress. It was therefore concluded that ergothioneine may be beneficial to horses subjected to endurance exercise.
Collapse
Affiliation(s)
- Adakole Sylvanus Adah
- grid.412974.d0000 0001 0625 9425Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Joseph Olusegun Ayo
- grid.411225.10000 0004 1937 1493Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Deborah Arimie Adah
- grid.412974.d0000 0001 0625 9425Department of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Charles Obiora Nwonuma
- grid.448923.00000 0004 1767 6410Department of Biochemistry, Landmark University, Omuaran, Nigeria
| | - Teslim Alabi Lawal
- Computational Biophysical Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University, Ogbomoso, Nigeria
| |
Collapse
|
12
|
The Astonishing Large Family of HSP40/DnaJ Proteins Existing in Leishmania. Genes (Basel) 2022; 13:genes13050742. [PMID: 35627127 PMCID: PMC9141911 DOI: 10.3390/genes13050742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Abrupt environmental changes are faced by Leishmania parasites during transmission from a poikilothermic insect vector to a warm-blooded host. Adaptation to harsh environmental conditions, such as nutrient deprivation, hypoxia, oxidative stress and heat shock needs to be accomplished by rapid reconfiguration of gene expression and remodeling of protein interaction networks. Chaperones play a central role in the maintenance of cellular homeostasis, and they are responsible for crucial tasks such as correct folding of nascent proteins, protein translocation across different subcellular compartments, avoiding protein aggregates and elimination of damaged proteins. Nearly one percent of the gene content in the Leishmania genome corresponds to members of the HSP40 family, a group of proteins that assist HSP70s in a variety of cellular functions. Despite their expected relevance in the parasite biology and infectivity, little is known about their functions or partnership with the different Leishmania HSP70s. Here, we summarize the structural features of the 72 HSP40 proteins encoded in the Leishmania infantum genome and their classification into four categories. A review of proteomic data, together with orthology analyses, allow us to postulate cellular locations and possible functional roles for some of them. A detailed study of the members of this family would provide valuable information and opportunities for drug discovery and improvement of current treatments against leishmaniasis.
Collapse
|
13
|
Karunanayake C, Page RC. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Exp Biol Med (Maywood) 2021; 246:1419-1434. [PMID: 33730888 PMCID: PMC8243209 DOI: 10.1177/1535370221999812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
14
|
Hetz C. Adapting the proteostasis capacity to sustain brain healthspan. Cell 2021; 184:1545-1560. [PMID: 33691137 DOI: 10.1016/j.cell.2021.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Sustaining neuronal proteostasis during the course of our life is a central aspect required for brain function. The dynamic nature of synaptic composition and abundance is a requisite to drive cognitive and motor processes involving a tight control of many aspects of protein biosynthesis and degradation. Through the concerted action of specialized stress sensors, the proteostasis network monitors and limits the accumulation of damaged, misfolded, or aggregated proteins. These stress pathways signal to the cytosol and nucleus to reprogram gene expression, enabling adaptive programs to recover cell function. During aging, the activity of the proteostasis network declines, which may increase the risk of accumulating abnormal protein aggregates, a hallmark of most neurodegenerative diseases. Here, I discuss emerging concepts illustrating the functional significance of adaptive signaling pathways to normal brain physiology and their contribution to age-related disorders. Pharmacological and gene therapy strategies to intervene and boost proteostasis are expected to extend brain healthspan and ameliorate disease states.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
15
|
Johnson SL, Ranxhi B, Libohova K, Tsou WL, Todi SV. Ubiquitin-interacting motifs of ataxin-3 regulate its polyglutamine toxicity through Hsc70-4-dependent aggregation. eLife 2020; 9:60742. [PMID: 32955441 PMCID: PMC7505662 DOI: 10.7554/elife.60742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2020] [Indexed: 12/17/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) belongs to the family of polyglutamine neurodegenerations. Each disorder stems from the abnormal lengthening of a glutamine repeat in a different protein. Although caused by a similar mutation, polyglutamine disorders are distinct, implicating non-polyglutamine regions of disease proteins as regulators of pathogenesis. SCA3 is caused by polyglutamine expansion in ataxin-3. To determine the role of ataxin-3’s non-polyglutamine domains in disease, we utilized a new, allelic series of Drosophila melanogaster. We found that ataxin-3 pathogenicity is saliently controlled by polyglutamine-adjacent ubiquitin-interacting motifs (UIMs) that enhance aggregation and toxicity. UIMs function by interacting with the heat shock protein, Hsc70-4, whose reduction diminishes ataxin-3 toxicity in a UIM-dependent manner. Hsc70-4 also enhances pathogenicity of other polyglutamine proteins. Our studies provide a unique insight into the impact of ataxin-3 domains in SCA3, identify Hsc70-4 as a SCA3 enhancer, and indicate pleiotropic effects from HSP70 chaperones, which are generally thought to suppress polyglutamine degeneration.
Collapse
Affiliation(s)
- Sean L Johnson
- Department of Pharmacology, Wayne State University, Detroit, United States
| | - Bedri Ranxhi
- Department of Pharmacology, Wayne State University, Detroit, United States
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University, Detroit, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, United States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, United States.,Department of Neurology, Wayne State University, Detroit, United States
| |
Collapse
|