1
|
Wang Q, Liu Z, Ma A, Li Z, Liu B, Ma Q. Computational methods and challenges in analyzing intratumoral microbiome data. Trends Microbiol 2023; 31:707-722. [PMID: 36841736 PMCID: PMC10272078 DOI: 10.1016/j.tim.2023.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
The human microbiome is intimately related to cancer biology and plays a vital role in the efficacy of cancer treatments, including immunotherapy. Extraordinary evidence has revealed that several microbes influence tumor development through interaction with the host immune system, that is, immuno-oncology-microbiome (IOM). This review focuses on the intratumoral microbiome in IOM and describes the available data and computational methods for discovering biological insights of microbial profiling from host bulk, single-cell, and spatial sequencing data. Critical challenges in data analysis and integration are discussed. Specifically, the microorganisms associated with cancer and cancer treatment in the context of IOM are collected and integrated from the literature. Lastly, we provide our perspectives for future directions in IOM research.
Collapse
Affiliation(s)
- Qi Wang
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Zhaoqian Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China; Shandong National Center for Applied Mathematics, Jinan, Shandong, 250100, China.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Huang J, Zheng X, Kang W, Hao H, Mao Y, Zhang H, Chen Y, Tan Y, He Y, Zhao W, Yin Y. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer. Front Immunol 2022; 13:874922. [PMID: 35911731 PMCID: PMC9336524 DOI: 10.3389/fimmu.2022.874922] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-PD-1 immunotherapy has saved numerous lives of cancer patients; however, it only exerts efficacy in 10-15% of patients with colorectal cancer. Fecal microbiota transplantation (FMT) is a potential approach to improving the efficacy of anti-PD-1 therapy, whereas the detailed mechanisms and the applicability of this combination therapy remain unclear. In this study, we evaluated the synergistic effect of FMT with anti-PD-1 in curing colorectal tumor-bearing mice using a multi-omics approach. Mice treated with the combination therapy showed superior survival rate and tumor control, compared to the mice received anti-PD-1 therapy or FMT alone. Metagenomic analysis showed that composition of gut microbiota in tumor-bearing mice treated with anti-PD-1 therapy was remarkably altered through receiving FMT. Particularly, Bacteroides genus, including FMT-increased B. thetaiotaomicron, B. fragilis, and FMT-decreased B. ovatus might contribute to the enhanced efficacy of anti-PD-1 therapy. Furthermore, metabolomic analysis upon mouse plasma revealed several potential metabolites that upregulated after FMT, including punicic acid and aspirin, might promote the response to anti-PD-1 therapy via their immunomodulatory functions. This work broadens our understanding of the mechanism by which FMT improves the efficacy of anti-PD-1 therapy, which may contribute to the development of novel microbiota-based anti-cancer therapies.
Collapse
Affiliation(s)
- Jiayuan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Xing Zheng
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Wanying Kang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Huaijie Hao
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yudan Mao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuan Chen
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yan Tan
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yulong He
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Wenjing Zhao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yiming Yin, ; Wenjing Zhao,
| | - Yiming Yin
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
- *Correspondence: Yiming Yin, ; Wenjing Zhao,
| |
Collapse
|
3
|
The Role of Gut Microbiota in Tumor Immunotherapy. J Immunol Res 2021; 2021:5061570. [PMID: 34485534 PMCID: PMC8413023 DOI: 10.1155/2021/5061570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy is the fourth therapy after surgery, chemotherapy, and radiotherapy. It has made great breakthroughs in the treatment of some epithelial tumors and hematological tumors. However, its adverse reactions are common or even more serious, and the response rate in some solid tumors is not satisfactory. With the maturity of genomics and metabolomics technologies, the effect of intestinal microbiota in tumor development and treatment has gradually been recognized. The microbiota may affect tumor immunity by regulating the host immune system and tumor microenvironment. Some bacteria help fight tumors by activating immunity, while some bacteria mediate immunosuppression to help cancer cells escape from the immune system. More and more studies have revealed that the effects and complications of tumor immunotherapy are related to the composition of the gut microbiota. The composition of the intestinal microbiota that is sensitive to treatment or prone to adverse reactions has certain characteristics. These characteristics may be used as biomarkers to predict the prognosis of immunotherapy and may also be developed as “immune potentiators” to assist immunotherapy. Some clinical and preclinical studies have proved that microbial intervention, including microbial transplantation, can improve the sensitivity of immunotherapy or reduce adverse reactions to a certain extent. With the development of gene editing technology and nanotechnology, the design and development of engineered bacteria that contribute to immunotherapy has become a new research hotspot. Based on the relationship between the intestinal microbiota and immunotherapy, the correct mining of microbial information and the development of reasonable and feasible microbial intervention methods are expected to optimize tumor immunotherapy to a large extent and bring new breakthroughs in tumor treatment.
Collapse
|
5
|
Kanikarla Marie P, Haymaker C, Parra ER, Kim YU, Lazcano R, Gite S, Lorenzini D, Wistuba II, Tidwell RSS, Song X, Foo WC, Maru DM, Chun YS, Futreal A, Kee B, Menter D, Solis L, Tzeng CW, Parseghian C, Raghav K, Morris V, Chang CC, Jenq R, Tam A, Bernatchez C, Kopetz S, Vauthey JN, Overman MJ. Pilot Clinical Trial of Perioperative Durvalumab and Tremelimumab in the Treatment of Resectable Colorectal Cancer Liver Metastases. Clin Cancer Res 2021; 27:3039-3049. [PMID: 33811152 DOI: 10.1158/1078-0432.ccr-21-0163] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Despite the prognostic importance of immune infiltrate in colorectal cancer, immunotherapy has demonstrated limited clinical activity in refractory metastatic proficient mismatch-repair (pMMR) colorectal cancer. This study explores combining anti-CTLA-4 and an anti-PD-L1 therapy in the preoperative management of resectable colorectal cancer liver metastases with the intent to improve immune responses in this disease setting. PATIENTS AND METHODS Patients with resectable colorectal cancer liver-only metastases received one dose of tremelimumab and durvalumab preoperatively followed by single-agent durvalumab postoperatively. Primary objectives were to determine feasibility and safety. RESULTS A total of 24 patients were enrolled between November 2016 and November 2019. Twenty-three patients received treatment [21 pMMR and 2 deficient mismatch-repair (dMMR)] and subsequently 17 (74%; 95% CI: 53%-88%) underwent surgical resection. Grade 3/4 treatment-related immune toxicity and postoperative grade 3/4 toxicity were seen in 5/23 (22%; 95% CI: 10%-44%) and 2/17 (12%; 95% CI: 2%-38%) patients. The median relapse-free survival (RFS) was 9.7 (95% CI: 8.1-17.8) months, and overall survival was 24.5 (95% CI: 16.5-28.4) months. Four patients demonstrated complete pathologic response, two dMMR patients and two POLE mutation patients. Pre- and post-tumor tissue analysis by flow cytometry, immunofluorescence, and RNA sequencing revealed similar levels of T-cell infiltration, but did demonstrate evidence of CD8+ and CD4+ activation posttreatment. An increase in B-cell transcriptome signature and B-cell density was present in posttreatment samples from patients with prolonged RFS. CONCLUSIONS This study demonstrates the safety of neoadjuvant combination tremelimumab and durvalumab prior to colorectal cancer liver resection. Evidence for T- and B-cell activation following this therapy was seen in pMMR metastatic colorectal cancer.
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Young Uk Kim
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Swati Gite
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniele Lorenzini
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca S Slack Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofei Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wai Chin Foo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yun Shin Chun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andy Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bryan Kee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Wei Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine Parseghian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Van Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alda Tam
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chantale Bernatchez
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Lamousé-Smith E, Kelly D, De Cremoux I. Designing bugs as drugs: exploiting the gut microbiome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G295-G303. [PMID: 33264062 PMCID: PMC8609565 DOI: 10.1152/ajpgi.00381.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extensive investigation of the human microbiome and the accumulating evidence regarding its critical relationship to human health and disease has advanced recognition of its potential as the next frontier of drug development. The rapid development of technologies, directed at understanding the compositional and functional dynamics of the human microbiome, and the ability to mine for novel therapeutic targets and biomarkers are leading innovative efforts to develop microbe-derived drugs that can prevent and treat autoimmune, metabolic, and infectious diseases. Increasingly, academics, biotechs, investors, and large pharmaceutical companies are partnering to collectively advance various therapeutic modalities ranging from live bacteria to small molecules. We review the leading platforms in current development focusing on live microbial consortia, engineered microbes, and microbial-derived metabolites. We will also touch on how the field is addressing and challenging the traditional definitions of pharmacokinetics and pharmacodynamics, dosing, toxicity, and safety to advance the development of these novel and cutting-edge therapeutics into the clinic.
Collapse
|