1
|
Wu M, Yu J, Zhong A, Tang Y, Li M, Liu C, Sun D. Muscle ultrasound to identify prednisone-induced muscle damage in adults with nephrotic syndrome. Steroids 2024; 207:109434. [PMID: 38710261 DOI: 10.1016/j.steroids.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Steroid myopathy is a non-inflammatory toxic myopathy that primarily affects the proximal muscles of the lower limbs. Due to its non-specific symptoms, it is often overshadowed by patients' underlying conditions. Prolonged or high-dosage use of glucocorticoids leads to a gradual decline in muscle mass. There are no tools available to identify the course of steroid myopathy before the patient displays substantial clinical symptoms. In this study, we investigated individuals with nephrotic syndrome receiving prednisone who underwent muscle ultrasound to obtain cross-sectional and longitudinal pictures of three major proximal muscles in the lower limbs: the vastus lateralis, tibialis anterior, and medial gastrocnemius muscles. Our findings revealed that grip strength was impaired in the prednisolone group, creatine kinase levels were reduced within the normal range; echo intensity of the vastus lateralis and medial gastrocnemius muscles was enhanced, the pennation angle was reduced, and the tibialis anterior muscle exhibited increased echo intensity and decreased thickness. The total dose of prednisone and the total duration of treatment impacted the degree of muscle damage. Our findings indicate that muscle ultrasound effectively monitors muscle structure changes in steroid myopathy. Combining clinical symptoms, serum creatine kinase levels, and grip strength improves the accuracy of muscle injury evaluation.
Collapse
Affiliation(s)
- Mengmeng Wu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Graduate School, Xuzhou Medical University, Xuzhou 221002, China
| | - Jinnuo Yu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Graduate School, Xuzhou Medical University, Xuzhou 221002, China
| | - Ao Zhong
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Graduate School, Xuzhou Medical University, Xuzhou 221002, China
| | - Yifan Tang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Graduate School, Xuzhou Medical University, Xuzhou 221002, China
| | - Manzhi Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Graduate School, Xuzhou Medical University, Xuzhou 221002, China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
2
|
Wu M, Liu C, Sun D. Glucocorticoid-Induced Myopathy: Typology, Pathogenesis, Diagnosis, and Treatment. Horm Metab Res 2024; 56:341-349. [PMID: 38224966 DOI: 10.1055/a-2246-2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Glucocorticoid-induced myopathy is a non-inflammatory toxic myopathy typified by proximal muscle weakness, muscle atrophy, fatigue, and easy fatigability. These vague symptoms coupled with underlying disorders may mask the signs of glucocorticoid-induced myopathy, leading to an underestimation of the disease's impact. This review briefly summarizes the classification, pathogenesis, and treatment options for glucocorticoid-induced muscle wasting. Additionally, we discuss current diagnostic measures in clinical research and routine care used for diagnosing and monitoring glucocorticoid-induced myopathy, which includes gait speed tests, muscle strength tests, hematologic tests, bioelectrical impedance analysis (BIA), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), electromyography, quantitative muscle ultrasound, histological examination, and genetic analysis. Continuous monitoring of patients receiving glucocorticoid therapy plays an important role in enabling early detection of glucocorticoid-induced myopathy, allowing physicians to modify treatment plans before significant clinical weakness arises.
Collapse
Affiliation(s)
- Mengmeng Wu
- Department of Nephrology, Xuzhou Medical University Affiliated Hospital, Xuzhou, China
- Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Caixia Liu
- Department of Nephrology, Xuzhou Medical University Affiliated Hospital, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Xuzhou Medical University Affiliated Hospital, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Marzuca-Nassr GN, Peñailillo L, Valladares-Ide D, Martinez-Huenchullan S, Curi R, Hirabara SM, Vitzel KF. Editorial: Spotlight on aging: physiology, prevention, and management of skeletal muscle atrophy. Front Physiol 2023; 14:1333577. [PMID: 38116583 PMCID: PMC10728817 DOI: 10.3389/fphys.2023.1333577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Universidad de La Frontera, Temuco, Chile
- Interuniversity Center for Healthy Aging RED21993, Talca, Chile
| | - Luis Peñailillo
- Faculty of Rehabilitation Sciences, Exercise and Rehabilitation Sciences Institute, Universidad Andrés Bello, Santiago, Chile
| | - Denisse Valladares-Ide
- Interuniversity Center for Healthy Aging RED21993, Talca, Chile
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | | | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| |
Collapse
|
4
|
Genome Editing to Abrogate Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:157-176. [DOI: 10.1007/978-981-19-5642-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Redox Control of Signalling Responses to Contractile Activity and Ageing in Skeletal Muscle. Cells 2022; 11:cells11101698. [PMID: 35626735 PMCID: PMC9139227 DOI: 10.3390/cells11101698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Research over almost 40 years has established that reactive oxygen species are generated at different sites in skeletal muscle and that the generation of these species is increased by various forms of exercise. Initially, this was thought to be potentially deleterious to skeletal muscle and other tissues, but more recent data have identified key roles of these species in muscle adaptations to exercise. The aim of this review is to summarise our current understanding of these redox signalling roles of reactive oxygen species in mediating responses of muscle to contractile activity, with a particular focus on the effects of ageing on these processes. In addition, we provide evidence that disruption of the redox status of muscle mitochondria resulting from age-associated denervation of muscle fibres may be an important factor leading to an attenuation of some muscle responses to contractile activity, and we speculate on potential mechanisms involved.
Collapse
|
6
|
Martinez-Arnau FM, Buigues C, Fonfría-Vivas R, Cauli O. Respiratory function correlates with fat mass index and blood triglycerides in institutionalized older individuals. Endocr Metab Immune Disord Drug Targets 2022; 22:1029-1039. [PMID: 35352657 DOI: 10.2174/1871530322666220329150813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND We investigated the relationship between respiratory function measured by spirometry analysis and anthropometric variables (skeletal and fat mass) and nutritional status in the institutionalized elderly, particularly at high risk of adverse outcomes after respiratory infections and malnutrition. DESIGN A multicenter cross-sectional study with quantitative approach among older people institutionalized living in nursing homes. METHODS Respiratory function was assessed by measuring the forced vital capacity, forced expiratory volume in the first second, the ratio between FEV1 and FVC (FEV1/FVC), and peak expiratory flow in percentage by means of spirometric analysis (values of the forced expiratory volume measured during the first second of the forced breath (FEV1) and forced vital capacity (FVC)). Nutritional assessment and anthropometry analysis were done to evaluate under or over nutrition/weight. RESULTS There was a significant (p<0.05) and positive correlation between FEV1 and skeletal muscle mass index, whereas fat mass index correlated significantly (p<0.01) with the FEV1/FVC index. FEV1/FVC values were both significantly (p<0.05) associated with high body mass index and triglyceride levels in blood. The prevalence of individuals with ventilator restrictive pattern (FEV1/FVC>70% with FEV1 and FVC<80%) was 27.6% and 12 individuals (21.1%) receive daily bronchodilators as part of the pharmacological treatment for respiratory disorders. A logistic regression was performed to identify predictors of restrictive respiratory pattern. The following variables were entered into the model: age group, female gender, Charlson comorbidity index, body-mass index (BMI), fat mass index, skeletal muscle mass index, total cholesterol and triglycerides concentration. The model was statistically significant (p < 0.05; R2 = 0.39), correctly classifying 70.0% of cases, with a sensitivity of 89.3% and a specificity of 50.0%. Area under curve was 0.71 (IC95% 0.54-0.88; p=0.023). The highest OR for restrictive respiratory pattern were for BMI (OR=5.09) and triglycerides concentration in blood (>150 mg/dl) (OR=5.59). CONCLUSION The relationship between a restrictive pattern of respiratory function and fat mass which deserves future investigation to manage these parameters as possible modifiable factor of altered respiratory function in overweight institutionalized older individuals.
Collapse
Affiliation(s)
- Francisco Miguel Martinez-Arnau
- Department of Physiotherapy, University of Valencia, Valencia, Spain
- Frailty and Cognitive Impairment Research Group (FROG), University of Valencia, Valencia, Spain
| | - Cristina Buigues
- Frailty and Cognitive Impairment Research Group (FROG), University of Valencia, Valencia, Spain
- Department of Medicine and Nursing, University of Valencia, Spain
| | - Rosa Fonfría-Vivas
- Frailty and Cognitive Impairment Research Group (FROG), University of Valencia, Valencia, Spain
- Department of Medicine and Nursing, University of Valencia, Spain
| | - Omar Cauli
- Frailty and Cognitive Impairment Research Group (FROG), University of Valencia, Valencia, Spain
- Department of Medicine and Nursing, University of Valencia, Spain
| |
Collapse
|
7
|
Lee J, Shields RK. Extracellular to Intracellular Body Water and Cognitive Function among Healthy Older and Younger Adults. J Funct Morphol Kinesiol 2022; 7:jfmk7010018. [PMID: 35225904 PMCID: PMC8883954 DOI: 10.3390/jfmk7010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Compromised cognitive function is associated with increased mortality and increased healthcare costs. Physical characteristics including height, weight, body mass index, sex, and fat mass are often associated with cognitive function. Extracellular to intracellular body water ratio offers an additional anthropometric measurement that has received recent attention because of its association with systemic inflammation, hypertension, and blood−brain barrier permeability. The purposes of this study were to determine whether extracellular to intracellular body water ratios are different between younger and older people and whether they are associated with cognitive function, including executive function and attention, working memory, and information processing speed. A total of 118 healthy people (39 older; 79 younger) participated in this study. We discovered that extracellular to intracellular body water ratio increased with age, was predictive of an older person’s ability to inhibit information and stay attentive to a desired task (Flanker test; R2 = 0.24; p < 0.001), and had strong sensitivity (83%) and specificity (91%) to detect a lower executive function score. These findings support that extracellular to intracellular body water ratio offers predictive capabilities of cognitive function, even in a healthy group of elderly people.
Collapse
|
8
|
Marzuca-Nassr GN, Kuwabara WMT, Vitzel KF, Murata GM, Torres RP, Mancini-Filho J, Alba-Loureiro TC, Curi R. Endoplasmic Reticulum Stress and Autophagy Markers in Soleus Muscle Disuse-Induced Atrophy of Rats Treated with Fish Oil. Nutrients 2021; 13:nu13072298. [PMID: 34371808 PMCID: PMC8308346 DOI: 10.3390/nu13072298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) and autophagy pathways are implicated in disuse muscle atrophy. The effects of high eicosapentaenoic (EPA) or high docosahexaenoic (DHA) fish oils on soleus muscle ERS and autophagy markers were investigated in a rat hindlimb suspension (HS) atrophy model. Adult Wistar male rats received daily by gavage supplementation (0.3 mL per 100 g b.w.) of mineral oil or high EPA or high DHA fish oils (FOs) for two weeks. Afterward, the rats were subjected to HS and the respective treatments concomitantly for an additional two-week period. After four weeks, we evaluated ERS and autophagy markers in the soleus muscle. Results were analyzed using two-way analysis of variance (ANOVA) and Bonferroni post hoc test. Gastrocnemius muscle ω-6/ω-3 fatty acids (FAs) ratio was decreased by both FOs indicating the tissue incorporation of omega-3 fatty acids. HS altered (p < 0.05) the protein content (decreasing total p38 and BiP and increasing p-JNK2/total JNK2 ratio, and caspase 3) and gene expressions (decreasing BiP and increasing IRE1 and PERK) of ERS and autophagy (decreasing Beclin and increasing LC3 and ATG14) markers in soleus. Both FOs attenuated (p < 0.05) the increase in PERK and ATG14 expressions induced by HS. Thus, both FOs could potentially attenuate ERS and autophagy in skeletal muscles undergoing atrophy.
Collapse
Affiliation(s)
- Gabriel Nasri Marzuca-Nassr
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
- Correspondence: ; Tel.: +56-45-2596713
| | - Wilson Mitsuo Tatagiba Kuwabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
- School of Health Sciences, College of Health, Massey University, Auckland 0745, New Zealand
| | - Gilson Masahiro Murata
- Nephrology Division, Medical Investigation Laboratory-29 (LIM-29), Medical School, University of São Paulo (FM-USP), São Paulo 01246-903, Brazil;
| | - Rosângela Pavan Torres
- Department of Lipids Laboratory, Food Science & Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (R.P.T.); (J.M.-F.)
| | - Jorge Mancini-Filho
- Department of Lipids Laboratory, Food Science & Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (R.P.T.); (J.M.-F.)
| | - Tatiana Carolina Alba-Loureiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
- Butantan Institute, São Paulo 05508-040, Brazil
| |
Collapse
|
9
|
Jackson MJ. On the mechanisms underlying attenuated redox responses to exercise in older individuals: A hypothesis. Free Radic Biol Med 2020; 161:326-338. [PMID: 33099002 PMCID: PMC7754707 DOI: 10.1016/j.freeradbiomed.2020.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Responding appropriately to exercise is essential to maintenance of skeletal muscle mass and function at all ages and particularly during aging. Here, a hypothesis is presented that a key component of the inability of skeletal muscle to respond effectively to exercise in aging is a denervation-induced failure of muscle redox signalling. This novel hypothesis proposes that an initial increase in oxidation in muscle mitochondria leads to a paradoxical increase in the reductive state of specific cysteines of signalling proteins in the muscle cytosol that suppresses their ability to respond to normal oxidising redox signals during exercise. The following are presented for consideration:Transient loss of integrity of peripheral motor neurons occurs repeatedly throughout life and is normally rapidly repaired by reinnervation, but this repair process becomes less efficient with aging. Each transient loss of neuromuscular integrity leads to a rapid, large increase in mitochondrial peroxide production in the denervated muscle fibers and in neighbouring muscle fibers. This peroxide may initially act to stimulate axonal sprouting and regeneration, but also stimulates retrograde mitonuclear communication to increase expression of a range of cytoprotective proteins in an attempt to protect the fiber and neighbouring tissues against oxidative damage. The increased peroxide within mitochondria does not lead to an increased cytosolic peroxide, but the increases in adaptive cytoprotective proteins include some located to the muscle cytosol which modify the local cytosol redox environment to induce a more reductive state in key cysteines of specific signalling proteins. Key adaptations of skeletal muscle to exercise involve transient peroxiredoxin oxidation as effectors of redox signalling in the cytosol. This requires sensitive oxidation of key cysteine residues. In aging, the chronic change to a more reductive cytosolic environment prevents the transient oxidation of peroxiredoxin 2 and hence prevents essential adaptations to exercise, thus contributing to loss of muscle mass and function. Experimental approaches suitable for testing the hypothesis are also outlined.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
10
|
Abreu P, Serna JDC, Munhoz AC, Kowaltowski AJ. Calorie restriction changes muscle satellite cell proliferation in a manner independent of metabolic modulation. Mech Ageing Dev 2020; 192:111362. [PMID: 33010305 DOI: 10.1016/j.mad.2020.111362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
Calorie restriction is known to promote healthy aging, which includes prevention of muscle loss. We investigated the effect of rodent calorie restriction on mitochondrial respiration and clonogenic capacity of muscle satellite stem cells, since metabolic alterations are known to regulate stem cell activity. Surprisingly, short or long-term calorie restriction do not change mitochondrial or glycolytic function. Nevertheless, both short- and long-term calorie restriction enhance myogenic colony formation. Overall, our results show that not all changes in satellite stem cell function are accompanied by metabolic remodeling.
Collapse
Affiliation(s)
- Phablo Abreu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana C Munhoz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
High-intensity interval training on body composition, functional capacity and biochemical markers in healthy young versus older people. Exp Gerontol 2020; 141:111096. [PMID: 32971179 DOI: 10.1016/j.exger.2020.111096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of the following study was to identify the effects of a 12-week high-intensity interval training (HIIT) program on the modification of parameters of body composition, functional capacity as well as lipid and glucose homeostasis markers in healthy young people versus older adults. DESIGN Experimental trial. METHODS Healthy young (YNG, 21 ± 1 years, BMI 26.01 ± 2.64 kg·m-2, n = 10) and older (OLD, 66 ± 5 years, BMI 27.43 ± 3.11 kg·m-2, n = 10) males were subjected to 12 weeks of HIIT. Prior to and immediately after the HIIT program, dual-energy X-ray absorptiometry, dominant leg strength one-repetition maximum (1-RM), maximal oxygen uptake (VO2max) and physical performance tests were performed. Blood samples were also taken. RESULTS Flexibility (P = 0.000), static balance (P = 0.004), timed up and go test (TUG) (P = 0.015), short physical performance battery (SPPB) (P = 0.005), dominant leg strength 1-RM (P = 0.012), and VO2max (P = 0.000) were better in YNG versus OLD. HIIT improved the % whole-body fat mass (P = 0.031), leg lean mass (P = 0.047), dominant leg strength 1-RM (P = 0.025), VO2max (P = 0.000), fasting cholesterol (P = 0.017) and fasting glucose (P = 0.006). TUG was improved by the training only in the OLD group (P = 0.016), but insulin (P = 0.002) and the homeostasis model assessment - insulin sensitivity (HOMA-IS) (P = 0.000) decreased only in the YNG group. HOMA-IS was correlated positive with BMI (R = 0.474, P = 0.035) and with whole-body fat mass (R = 0.517, P = 0.019). CONCLUSIONS HIIT for 12 weeks improves parameters of body composition, functional capacity and fasting serum lipid and glucose homeostasis markers in healthy young and older participants. Young people are shown as benefiting more.
Collapse
|