1
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
2
|
Ullah M, Kodam SP, Mu Q, Akbar A. Microbubbles versus Extracellular Vesicles as Therapeutic Cargo for Targeting Drug Delivery. ACS NANO 2021; 15:3612-3620. [PMID: 33666429 DOI: 10.1021/acsnano.0c10689] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) and microbubbles are nanoparticles in drug-delivery systems that are both considered important for clinical translation. Current research has found that both microbubbles and EVs have the potential to be utilized as drug-delivery agents for therapeutic targets in various diseases. In combination with EVs, microbubbles are capable of delivering chemotherapeutic drugs to tumor sites and neighboring sites of damaged tissues. However, there are no standards to evaluate or to compare the benefits of EVs (natural carrier) versus microbubbles (synthetic carrier) as drug carriers. Both drug carriers are being investigated for release patterns and for pharmacokinetics; however, few researchers have focused on their targeted delivery or efficacy. In this Perspective, we compare EVs and microbubbles for a better understanding of their utility in terms of delivering drugs to their site of action and future clinical translation.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Sai Priyanka Kodam
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Qian Mu
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
3
|
Laundos TL, Vasques-Nóvoa F, Gomes RN, Sampaio-Pinto V, Cruz P, Cruz H, Santos JM, Barcia RN, Pinto-do-Ó P, Nascimento DS. Consistent Long-Term Therapeutic Efficacy of Human Umbilical Cord Matrix-Derived Mesenchymal Stromal Cells After Myocardial Infarction Despite Individual Differences and Transient Engraftment. Front Cell Dev Biol 2021; 9:624601. [PMID: 33614654 PMCID: PMC7890004 DOI: 10.3389/fcell.2021.624601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
Human mesenchymal stem cells gather special interest as a universal and feasible add-on therapy for myocardial infarction (MI). In particular, human umbilical cord matrix-derived mesenchymal stromal cells (UCM-MSC) are advantageous since can be easily obtained and display high expansion potential. Using isolation protocols compliant with cell therapy, we previously showed UCM-MSC preserved cardiac function and attenuated remodeling 2 weeks after MI. In this study, UCM-MSC from two umbilical cords, UC-A and UC-B, were transplanted in a murine MI model to investigate consistency and durability of the therapeutic benefits. Both cellular products improved cardiac function and limited adverse cardiac remodeling 12 weeks post-ischemic injury, supporting sustained and long-term beneficial therapeutic effect. Donor associated variability was found in the modulation of cardiac remodeling and activation of the Akt-mTOR-GSK3β survival pathway. In vitro, the two cell products displayed similar ability to induce the formation of vessel-like structures and comparable transcriptome in normoxia and hypoxia, apart from UCM-MSCs proliferation and expression differences in a small subset of genes associated with MHC Class I. These findings support that UCM-MSC are strong candidates to assist the treatment of MI whilst calling for the discussion on methodologies to characterize and select best performing UCM-MSC before clinical application.
Collapse
Affiliation(s)
- Tiago L. Laundos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Cardiovascular RandD Center, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Internal Medicine, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Rita N. Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Vasco Sampaio-Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | | | | | | | | | - Perpétua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Diana S. Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|