1
|
Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2022; 29:647-660. [PMID: 34158626 DOI: 10.1038/s41417-021-00359-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an encouraging and fast-growing platform used for the treatment of various types of tumors in human body. Despite the recent success of CAR T-cell therapy in hematologic malignancies, especially in B-cell lymphoma and acute lymphoblastic leukemia, the application of this treatment approach in solid tumors faced several obstacles resulted from the heterogeneous expression of antigens as well as the induction of immunosuppressive tumor microenvironment. Oncolytic virotherapy (OV) is a new cancer treatment modality by the use of competent or genetically engineered viruses to replicate in tumor cells selectively. OVs represent potential candidates to synergize the current setbacks of CAR T-cell application in solid tumors and then and overcome them. As well, the application of OVs gives researches the ability to engineer the virus with payloads in the way that it selectively deliver a specific therapeutic agents in tumor milieu to reinforce the cytotoxic activity of CAR T cells. Herein, we made a comprehensive review on the outcomes resulted from the combination of CAR T-cell immunotherapy and oncolytic virotherapy for the treatment of solid cancers. In the current study, we also provided brief details on some challenges that remained in this field and attempted to shed a little light on the future perspectives.
Collapse
|
2
|
Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, Akbari M. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int 2022; 22:168. [PMID: 35488303 PMCID: PMC9052538 DOI: 10.1186/s12935-022-02585-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising and rapidly expanding therapeutic option for a wide range of human malignancies. Despite the ongoing progress of CAR T-cell therapy in hematologic malignancies, the application of this therapeutic strategy in solid tumors has encountered several challenges due to antigen heterogeneity, suboptimal CAR T-cell trafficking, and the immunosuppressive features of the tumor microenvironment (TME). Oncolytic virotherapy is a novel cancer therapy that employs competent or genetically modified oncolytic viruses (OVs) to preferentially proliferate in tumor cells. OVs in combination with CAR T-cells are promising candidates for overcoming the current drawbacks of CAR T-cell application in tumors through triggering immunogenic cell death (ICD) in cancer cells. ICD is a type of cellular death in which danger-associated molecular patterns (DAMPs) and tumor-specific antigens are released, leading to the stimulation of potent anti-cancer immunity. In the present review, we discuss the biological causes of ICD, different types of ICD, and the synergistic combination of OVs and CAR T-cells to reach potent tumor-specific immunity.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia V Shirokova
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Science, Cihan University of Sulaimaniya, Suleimanyah, Kurdistan region, Iraq.,College of. Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Talar Ahmad Merza Mohamad
- Department of Pharmacology and Toxicology, Clinical Pharmacy, Hawler Medical University, College of Pharmacy, Kurdistan Region-Erbil, Iraq
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
York J, Gowrishankar K, Micklethwaite K, Palmer S, Cunningham AL, Nasr N. Evolving Strategies to Eliminate the CD4 T Cells HIV Viral Reservoir via CAR T Cell Immunotherapy. Front Immunol 2022; 13:873701. [PMID: 35572509 PMCID: PMC9098815 DOI: 10.3389/fimmu.2022.873701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising. CAR T cells, in contrast to endogenous cytotoxic T cells, can function independently of MHC to target HIV-infected cells, are efficacious and have demonstrated acceptable safety profiles and long-term persistence in peripheral blood. In this review, we present a comprehensive picture of the current efforts to target the HIV latent reservoir, with a focus on CAR T cell therapies. We highlight the current challenges and advances in this field, while discussing the importance of novel CAR designs in the efforts to find a HIV cure.
Collapse
Affiliation(s)
- Jarrod York
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kavitha Gowrishankar
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory – Institute of Clinical Pathology and Medical Research (ICPMR) Westmead, Sydney, NSW, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Zhang ZZ, Wang T, Wang XF, Zhang YQ, Song SX, Ma CQ. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacol Res 2021; 175:106036. [PMID: 34920118 DOI: 10.1016/j.phrs.2021.106036] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a late-model of immune cell therapy that has been shown to be effective in refractory/recurrent B-cell leukemia and lymphoma. Compared with the traditional anti-tumor methods, CAR-T cell therapy has the advantages of higher specificity, stronger lethality and longer-lasting efficacy. Although CAR-T cells have made significant progress in the treatment of hematologic malignancies, diverse difficulties remain in the treatment of solid tumors, including immune escape due to tumor antigen heterogeneity, preventing entry or limiting the persistence of CAR-T cells by physical or cytokine barriers and along with other immunosuppressive molecule and cells in the tumor microenvironment (TME). Otherwise, the intracellular signaling of CAR also impact on CAR-T cells persistence. Appropriate modification of intracellular costimulatory molecular signal in the structure of CAR or coexpression of CAR and cytokines can provide a way to enhance CAR-T cells activity. Additionally, CAR-T cells dysfunction due to T cell exhaustion is associated with multi-factors, especially transcription factors, such as c-Jun, NR4A. Engineering CAR-T cells to coexpress or knockout transcription factors in favor of TCM memory CAR-T cells differentiation was proved to prolonged the survival of CAR-T cells. Finally, combination of CAR-T cells with oncolytic viruses, nanoparticles or immune checkpoint inhibitors provides an effective measure to improve CAR-T cells function. Here, we discuss all of these advances and challenges and review promising strategies for treating solid tumors. In particular, we also highlight that CAR-T cells have enormous potential to be used in combination with other immunotherapies.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Tian Wang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Xiao-Feng Wang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Yu-Qing Zhang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Shu-Xia Song
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China.
| | - Cui-Qing Ma
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China.
| |
Collapse
|
5
|
Xiong X, Xi J, Liu Q, Wang C, Jiang Z, Yue SY, Shi L, Rong Y. Co-expression of IL-7 and PH20 promote anti-GPC3 CAR-T tumour suppressor activity in vivo and in vitro. Liver Int 2021; 41:1033-1043. [PMID: 33347692 DOI: 10.1111/liv.14771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND While CAR-T therapy has successfully treated haematological malignancies, it has proved sub-optimal for solid tumours. The main limitation is the inability of CAR-T cells to infiltrate and then proliferate within tumours. METHOD We co-expressed IL-7 and PH20, a type of hyaluronidase, with CAR targeting GPC3 (G3CAR-7 × 20). We test the anti-tumour ability in vitro and in vivo. Moreover the capacity of infiltration and proliferation of G3CAR-7 × 20 was measured. RESULT We found (G3CAR-7 × 20) exhibited better proliferation in vivo and in vitro than G3CAR, reduced the level of apoptosis after stimulation by tumour cells, and maintained the memory phenotype of CAR-T cells. G3CAR-7 × 20 also increased the ability of CAR-T cells to infiltrate tumour tissue. CONCLUSION co-expressed IL-7 and PH20 may significantly enhance the efficacy of targeted GPC3 CAR-T cells in solid tumours treatment.
Collapse
Affiliation(s)
- Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juanli Xi
- Department of Gastroenterology, Wuhan Third Hospital, Wuhan, China
| | - Qian Liu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cixiao Wang
- Nephrology Department II, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyou Jiang
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su-Yang Yue
- Department of Gastroenterology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huaian, China
| | - Lei Shi
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Rong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Fischbeck AJ, Ruehland S, Ettinger A, Paetzold K, Masouris I, Noessner E, Mendler AN. Tumor Lactic Acidosis: Protecting Tumor by Inhibiting Cytotoxic Activity Through Motility Arrest and Bioenergetic Silencing. Front Oncol 2020; 10:589434. [PMID: 33364193 PMCID: PMC7753121 DOI: 10.3389/fonc.2020.589434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Adoptive T cell therapy (ACT) is highly effective in the treatment of hematologic malignancies, but shows limited success in solid tumors. Inactivation of T cells in the tumor milieu is a major hurdle to a wider application of ACT. Cytotoxicity is the most relevant activity for tumor eradication. Here, we document that cytotoxic T cells (CTL) in lactic acidosis exhibited strongly reduced tumor cell killing, which could be compensated partly by increasing the CTL to tumor cell ratio. Lactic acid intervened at multiple steps of the killing process. Lactic acid repressed the number of CTL that performed lytic granule exocytosis (degranulation) in tumor cell co-culture, and, additionally impaired the quality of the response, as judged by the reduced intensity of degranulation and lower secretion of cytotoxins (perforin, granzyme B, granzyme A). CTL in lactic acid switched to a low bioenergetic profile with an inability to metabolize glucose efficiently. They responded to anti-CD3 stimulation poorly with less extracellular acidification rate (ECAR). This might explain their repressed granule exocytosis activity. Using live cell imaging, we show that CTL in lactic acid have reduced motility, resulting in lower field coverage. Many CTL in lactic acidosis did not make contact with tumor cells; however, those which made contact, adhered to the tumor cell much longer than a CTL in normal medium. Reduced motility together with prolonged contact duration hinders serial killing, a defining feature of killing potency, but also locally confines cytotoxic activity, which helps to reduce the risk of collateral organ damage. These activities define lactic acid as a major signaling molecule able to orchestrate the spatial distribution of CTL inside inflamed tissue, such as cancer, as well as moderating their functional response. Lactic acid intervention and strategies to improve T cell metabolic fitness hold promise to improve the clinical efficacy of T cell–based cancer immunotherapy.
Collapse
Affiliation(s)
| | - Svenja Ruehland
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | | | - Ilias Masouris
- Immunoanalytics, Helmholtz Center Munich, Munich, Germany
| | | | - Anna N Mendler
- Immunoanalytics, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
7
|
Patterson JD, Henson JC, Breese RO, Bielamowicz KJ, Rodriguez A. CAR T Cell Therapy for Pediatric Brain Tumors. Front Oncol 2020; 10:1582. [PMID: 32903405 PMCID: PMC7435009 DOI: 10.3389/fonc.2020.01582] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has recently begun to be used for solid tumors such as glioblastoma multiforme. Many children with pediatric malignant brain tumors develop extensive long-term morbidity of intensive multimodal curative treatment. Others with certain diagnoses and relapsed disease continue to have limited therapies and a dismal prognosis. Novel treatments such as CAR T cells could potentially improve outcomes and ameliorate the toxicity of current treatment. In this review, we discuss the potential of using CAR therapy for pediatric brain tumors. The emerging insights on the molecular subtypes and tumor microenvironment of these tumors provide avenues to devise strategies for CAR T cell therapy. Unique characteristics of these brain tumors, such as location and associated morbid treatment induced neuro-inflammation, are novel challenges not commonly encountered in adult brain tumors. Despite these considerations, CAR T cell therapy has the potential to be integrated into treatment schema for aggressive pediatric malignant brain tumors in the future.
Collapse
Affiliation(s)
- John D Patterson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jeffrey C Henson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rebecca O Breese
- Department of General Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin J Bielamowicz
- Division of Hematology/Oncology, Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|