1
|
Camps G, Maestro S, Torella L, Herrero D, Usai C, Bilbao-Arribas M, Aldaz A, Olagüe C, Vales A, Suárez-Amarán L, Aldabe R, Gonzalez-Aseguinolaza G. Protective role of RIPK1 scaffolding against HDV-induced hepatocyte cell death and the significance of cytokines in mice. PLoS Pathog 2024; 20:e1011749. [PMID: 38739648 PMCID: PMC11115361 DOI: 10.1371/journal.ppat.1011749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/23/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatitis delta virus (HDV) infection represents the most severe form of human viral hepatitis; however, the mechanisms underlying its pathology remain incompletely understood. We recently developed an HDV mouse model by injecting adeno-associated viral vectors (AAV) containing replication-competent HBV and HDV genomes. This model replicates many features of human infection, including liver injury. Notably, the extent of liver damage can be diminished with anti-TNF-α treatment. Here, we found that TNF-α is mainly produced by macrophages. Downstream of the TNF-α receptor (TNFR), the receptor-interacting serine/threonine-protein kinase 1 (RIPK1) serves as a cell fate regulator, playing roles in both cell survival and death pathways. In this study, we explored the function of RIPK1 and other host factors in HDV-induced cell death. We determined that the scaffolding function of RIPK1, and not its kinase activity, offers partial protection against HDV-induced apoptosis. A reduction in RIPK1 expression in hepatocytes through CRISPR-Cas9-mediated gene editing significantly intensifies HDV-induced damage. Contrary to our expectations, the protective effect of RIPK1 was not linked to TNF-α or macrophage activation, as their absence did not alter the extent of damage. Intriguingly, in the absence of RIPK1, macrophages confer a protective role. However, in animals unresponsive to type-I IFNs, RIPK1 downregulation did not exacerbate the damage, suggesting RIPK1's role in shielding hepatocytes from type-I IFN-induced cell death. Interestingly, while the damage extent is similar between IFNα/βR KO and wild type mice in terms of transaminase elevation, their cell death mechanisms differ. In conclusion, our findings reveal that HDV-induced type-I IFN production is central to inducing hepatocyte death, and RIPK1's scaffolding function offers protective benefits. Thus, type-I IFN together with TNF-α, contribute to HDV-induced liver damage. These insights may guide the development of novel therapeutic strategies to mitigate HDV-induced liver damage and halt disease progression.
Collapse
Affiliation(s)
- Gracián Camps
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Sheila Maestro
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Laura Torella
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Diego Herrero
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Carla Usai
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Martin Bilbao-Arribas
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Ana Aldaz
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Cristina Olagüe
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Africa Vales
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Lester Suárez-Amarán
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Rafael Aldabe
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| |
Collapse
|
2
|
Cao X, Peng S, Yan Y, Li J, Zhou J, Dai H, Xu J. Alleviation of temporomandibular joint osteoarthritis by targeting RIPK1-mediated inflammatory signalling. J Cell Mol Med 2024; 28:e17929. [PMID: 37643315 PMCID: PMC10902568 DOI: 10.1111/jcmm.17929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA), prevalent in adolescents and the elderly, has serious physical and psychological consequences. TMJOA is a degenerative disease of the cartilage and bone, mostly driven by inflammation, and synoviocytes are the first and most important inflammatory factor releasers. Receptor-interacting serine/threonine-protein kinase (RIPK1) promotes inflammatory response and cell death during an array of illnesses. This research aimed to explore the impacts of RIPK1 inhibitor therapy in TMJOA and the mechanism of RIPK1 in inducing inflammation during TMJOA. Herein, inhibition of RIPK1 suppressed the elevated levels of inflammatory factors, nuclear factor kappa B (NF-κB), along with markers of apoptosis and necroptosis after tumour necrosis factor (TNF)-α/cycloheximide (CHX) treatment in synoviocytes. Moreover, inflammation models were constructed in vivo through complete Freund's adjuvant (CFA) induction and disc perforation, and the findings supported that RIPK1 inhibition protected TMJ articular cartilage against progressive degradation. RIPK1 regulates NF-κB activation via cellular inhibitor of apoptosis proteins (cIAP), apoptosis via caspase-8, and necroptosis via RIPK3/mixed lineage kinase domain-like (MLKL) in synoviocytes, which in turn facilitates TMJOA inflammation progression.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Sisi Peng
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Ying Yan
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jun Li
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jianping Zhou
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jie Xu
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
3
|
Li M, Fu Z, Qi C, Wang Q, Xie H, Li H. Some Macrophages With High Expression of CHOP Undergo Necroptosis in Chronic Rhinosinusitis. Am J Rhinol Allergy 2023:19458924231163974. [PMID: 36946083 DOI: 10.1177/19458924231163974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Endoplasmic reticulum stress (ER stress) is activated in chronic sinusitis with nasal polyps (CRSwNP) and leads to increased expression of C/EBP homologous protein (CHOP). However, the role of CHOP in the pathogenesis of CRSwNP remains unclear. METHODS CHOP expression was detected by immunohistochemistry staining in nasal mucosa of control and CRSwNP patients. Co-localization of CHOP and cleaved caspase3, p-MLKL, and CD68 was detected by immunofluorescence staining in CRSwNP patients. TNFα, IFNγ, IL1β, LPS, and tunicamycin were added to primary dispersed nasal polyp cells (DNPCs) to explore their roles in cell death. Western blot, CCK8 assay, and flow cytometry were employed to detect cell death. RESULTS CHOP was specifically activated in CRSwNP compared to controls. It was mainly macrophages that highly expressed CHOP, some of which underwent apoptosis and the other underwent necroptosis. IL1β induced increased CHOP and apoptosis, and a slight p-MLKL. In addition, ER stress could also promote p-MLKL expression. Whereas classical TNFα plus IFNγ and LPS did not induce increased necroptosis in DNPCs. CONCLUSION IL1β induced the apoptotic pathway and minor necroptosis. And ER stress also plays a role in the occurrence of necroptosis in CRSwNP.
Collapse
Affiliation(s)
- Min Li
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ziming Fu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Qi
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qinying Wang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Xie
- Department of Otolaryngology, People's Hospital of Changshan, Changshan County, China
| | - Huabin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, 12478Fudan University, Shanghai, China
| |
Collapse
|
4
|
Han M, Wang X, Wang J, Lang D, Xia X, Jia Y, Chen Y. Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: A potential mechanism of inflammation-related necroptosis. Front Nutr 2022; 9:953646. [PMID: 36017227 PMCID: PMC9395728 DOI: 10.3389/fnut.2022.953646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common autoimmune and chronic inflammatory cutaneous disease with a relapsing-remitting course. Necroptosis is a regulated necrotic cell death mediated by receptor-interacting protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and mixed lineage kinase domain-like pseudokinase (MLKL), which is activated by tumor necrosis factor-α (TNF-α). However, the mechanism and the role of necroptosis have not been delineated in AD progression. (-)-Epigallocatechin-3-gallate (EGCG), the main biological activity of tea catechin, is well known for its beneficial effects in the treatment of skin diseases. Here, PEG-PLGA-EGCG nanoparticles (EGCG-NPs) were formulated to investigate the bioavailability of EGCG to rescue cellular injury following the inhibition of necroptosis after AD. 2,4-dinitrochlorobenzene (DNCB) was used to establish AD mouse models. As expected, topically applied EGCG-NPs elicited a significant amelioration of AD symptoms in skin lesions, including reductions in the ear and skin thickness, dermatitis score, and scratching behavior, which was accompanied by redox homeostasis restored early in the experiment. In addition, EGCG-NPs significantly decreased the expression of inflammatory cytokines like TNF-α, interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-6 (IL-6), and interleukin-17A (IL-17A) in a time-dependent manner than those of in AD group. As a result, the overexpression of RIP1, RIP3, and MLKL in the entire epidermis layers was dramatically blocked by EGCG-NPs, as well as the expression ofphosphorylated p38 (p-p38), extracellular signal-regulated kinase 1 (ERK1), and extracellular signal-regulated kinase 2 (ERK2). These findings promote that EGCG-NPs formulation represents a promising drug-delivery strategy for the treatment of AD by maintaining the balance of Th1/Th2 inflammation response and targeting necroptosis.
Collapse
Affiliation(s)
- Mengguo Han
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xue Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Jian Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Dongcen Lang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yongfang Jia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Ying Chen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Kratochvilova A, Ramesova A, Vesela B, Svandova E, Lesot H, Gruber R, Matalova E. Impact of FasL Stimulation on Sclerostin Expression and Osteogenic Profile in IDG-SW3 Osteocytes. BIOLOGY 2021; 10:biology10080757. [PMID: 34439989 PMCID: PMC8389703 DOI: 10.3390/biology10080757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary FasL used to be considered as a classical ligand triggering cell death (apoptosis) via its receptor, Fas and thefollowing caspase cascade. As such, it is known to be involved in regulation within the bone. Recently, however, the knowledge has expanded about the non-apoptotic and caspase-independent engagement of the Fas/FasL pathway. The present investigation identified that stimulation of osteocytic IDG-SW3 cells by FasL leads to a dramatic decrease in expression of the major osteocytic marker, sclerostin. Additionally, other key components of the osteogenic pathways were impacted, notably in a caspase-independent manner. Such findings are of importance for basic biology as well as biomedical applications since osteocytes are the major population within adult bones and Fas signalling is one of therapeutical targets, e.g., in the anti-osteoporotic treatment. Abstract The Fas ligand (FasL) is known from programmed cell death, the immune system, and recently also from bone homeostasis. As such, Fas signalling is a potential target of anti-osteoporotic treatment based on the induction of osteoclastic cell death. Less attention has been paid to osteocytes, although they represent the majority of cells within the mature bone and are the key regulators. To determine the impact of FasL stimulation on osteocytes, differentiated IDG-SW3 cells were challenged by FasL, and their osteogenic expression profiles were evaluated by a pre-designed PCR array. Notably, the most downregulated gene was the one for sclerostin, which is the major marker of osteocytes and a negative regulator of bone formation. FasL stimulation also led to significant changes (over 10-fold) in the expression of other osteogenic markers: Gdf10, Gli1, Ihh, Mmp10, and Phex. To determine whether these alterations involved caspase-dependent or caspase-independent mechanisms, the IDG-SW3 cells were stimulated by FasL with and without a caspase inhibitor: Q-VD-OPh. The alterations were also detected in the samples treated by FasL along with Q-VD-OPh, pointing to the caspase-independent impact of FasL stimulation. These results contribute to an understanding of the recently emerging pleiotropic effects of Fas/FasL signalling and specify its functions in bone cells.
Collapse
Affiliation(s)
- Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Alice Ramesova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University Vienna, Sensengasse 2a, 1090 Vienna, Austria;
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
- Institute of Physiology, Faculty of Veterinary Medicine, Veterinary University Brno, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|