1
|
Banks EJ, Le TBK. Co-opting bacterial viruses for DNA exchange: structure and regulation of gene transfer agents. Curr Opin Microbiol 2024; 78:102431. [PMID: 38309246 DOI: 10.1016/j.mib.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Horizontal gene transfer occurs via a range of mechanisms, including transformation, conjugation and bacteriophage transduction. Gene transfer agents (GTAs) are an alternative, less-studied route for interbacterial DNA exchange. Encoded within bacterial or archaeal genomes, GTAs assemble into phage-like particles that selflessly package and transmit host DNA to recipient bacteria. Several unique features distinguish GTAs from canonical phages such as an inability to self-replicate, thus producing non-infectious particles. GTAs are also deeply integrated into the physiology of the host cell and are maintained under tight host-regulatory control. Recent advances in understanding the structure and regulation of GTAs have provided further insights into a DNA transfer mechanism that is proving increasingly widespread across the bacterial tree of life.
Collapse
Affiliation(s)
- Emma J Banks
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Fallon AM. Wolbachia: Advancing into a Second Century. Methods Mol Biol 2024; 2739:1-13. [PMID: 38006542 DOI: 10.1007/978-1-0716-3553-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Wolbachia pipientis had its scientific debut nearly a century ago and has recently emerged as a target for therapeutic treatment of filarial infections and an attractive tool for control of arthropod pests. Wolbachia was known as a biological entity before DNA was recognized as the molecule that carries the genetic information on which life depends, and before arthropods and nematodes were grouped in the Ecdysozoa. Today, some investigators consider Wolbachia the most abundant endosymbiont on earth, given the numbers of its hosts and its diverse mutualistic, commensal, and parasitic roles in their life histories. Recent advances in molecular technologies have revolutionized our understanding of Wolbachia and its associated reproductive phenotypes. New models have emerged for its investigation, and substantial progress has been made towards Wolbachia-based interventions in medicine and agriculture. Here I introduce Wolbachia, with a focus on aspects of its biology that are covered in greater detail in subsequent chapters.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
3
|
Kuhn JH, Koonin EV. Viriforms-A New Category of Classifiable Virus-Derived Genetic Elements. Biomolecules 2023; 13:289. [PMID: 36830658 PMCID: PMC9953437 DOI: 10.3390/biom13020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The International Committee on Taxonomy of Viruses (ICTV) recently accepted viriforms as a new polyphyletic category of classifiable virus-derived genetic elements, juxtaposed to the polyphyletic virus, viroid, and satellite nucleic acid categories. Viriforms are endogenized former viruses that have been exapted by their cellular hosts to fulfill functions important for the host's life cycle. While morphologically resembling virions, particles made by viriforms do not package the viriform genomes but instead transport host genetic material. Known viriforms are highly diverse: members of family Polydnaviriformidae (former Polydnaviridae) have thus far been found exclusively in the genomes of braconid and ichneumonid parasitoid wasps, whereas the completely unrelated gene transfer agents (GTAs) are widely distributed among prokaryotes. In addition, recent discoveries likely extend viriforms to mammalian genomes. Here, we briefly outline the properties of these viriform groups and the first accepted and proposed ICTV frameworks for viriform classification.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Li M, Chen Q, Wu C, Li Y, Wang S, Chen X, Qiu B, Li Y, Mao D, Lin H, Yu D, Cao Y, Huang Z, Cui C, Zhong Z. A Novel Module Promotes Horizontal Gene Transfer in Azorhizobium caulinodans ORS571. Genes (Basel) 2022; 13:genes13101895. [PMID: 36292780 PMCID: PMC9601964 DOI: 10.3390/genes13101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Azorhizobium caulinodans ORS571 contains an 87.6 kb integrative and conjugative element (ICEAc) that conjugatively transfers symbiosis genes to other rhizobia. Many hypothetical redundant gene fragments (rgfs) are abundant in ICEAc, but their potential function in horizontal gene transfer (HGT) is unknown. Molecular biological methods were employed to delete hypothetical rgfs, expecting to acquire a minimal ICEAc and consider non-functional rgfs as editable regions for inserting genes related to new symbiotic functions. We determined the significance of rgf4 in HGT and identified the physiological function of genes designated rihF1a (AZC_3879), rihF1b (AZC_RS26200), and rihR (AZC_3881). In-frame deletion and complementation assays revealed that rihF1a and rihF1b work as a unit (rihF1) that positively affects HGT frequency. The EMSA assay and lacZ-based reporter system showed that the XRE-family protein RihR is not a regulator of rihF1 but promotes the expression of the integrase (intC) that has been reported to be upregulated by the LysR-family protein, AhaR, through sensing host’s flavonoid. Overall, a conservative module containing rihF1 and rihR was characterized, eliminating the size of ICEAc by 18.5%. We propose the feasibility of constructing a minimal ICEAc element to facilitate the exchange of new genetic components essential for symbiosis or other metabolic functions between soil bacteria.
Collapse
Affiliation(s)
- Mingxu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanhui Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyang Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sanle Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuelian Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bowen Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxin Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Lin
- Animal, Plant and Food Inspection Center, Nanjing Customs, No. 39, Chuangzhi Road, Nanjing 210019, China
| | - Daogeng Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Danzhou 571737, China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.H.); (C.C.); Tel.: +86-25-84396645 (Z.H.)
| | - Chunhong Cui
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.H.); (C.C.); Tel.: +86-25-84396645 (Z.H.)
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, Huang Y, Jia J, Dou T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J Basic Microbiol 2021; 61:1049-1070. [PMID: 34651331 DOI: 10.1002/jobm.202100201] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
The production and use of antibiotics are becoming increasingly common worldwide, and the problem of antibiotic resistance is increasing alarmingly. Drug-resistant infections threaten human life and health and impose a heavy burden on the global economy. The origin and molecular basis of bacterial resistance is the presence of antibiotic resistance genes (ARGs). Investigations on ARGs mostly focus on the environments in which antibiotics are frequently used, such as hospitals and farms. This literature review summarizes the current knowledge of the occurrence of antibiotic-resistant bacteria in nonclinical environments, such as air, aircraft wastewater, migratory bird feces, and sea areas in-depth, which have rarely been involved in previous studies. Furthermore, the mechanism of action of plasmid and phage during horizontal gene transfer was analyzed, and the transmission mechanism of ARGs was summarized. This review highlights the new mechanisms that enhance antibiotic resistance and the evolutionary background of multidrug resistance; in addition, some promising points for controlling or reducing the occurrence and spread of antimicrobial resistance are also proposed.
Collapse
Affiliation(s)
- Zonghui Jian
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zeng
- The Chenggong Department, Kunming Medical University Affiliated Stomatological Hospital, Kunming, Yunnan, China
| | - Taojie Xu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuai Sun
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shixiong Yan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lan Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junjing Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tengfei Dou
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|