1
|
Xie F, Zhu C, Gong L, Zhu N, Ma Q, Yang Y, Zhao X, Qin M, Lin Z, Wang Y. Engineering core-shell chromium nanozymes with inflammation-suppressing, ROS-scavenging and antibacterial properties for pulpitis treatment. NANOSCALE 2023; 15:13971-13986. [PMID: 37606502 DOI: 10.1039/d3nr02930a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Oral diseases are usually caused by inflammation and bacterial infection. Reactive oxygen species (ROS), which come from both autologous inflammation tissue and bacterial infection, play an important role in this process. Thus, the elimination of excessive intracellular ROS can be a promising strategy for anti-inflammatory treatment. With the rapid development of nanomedicines, nanozymes, which can maintain the intracellular redox balance and protect cells against oxidative damage, have shown great application prospects in the treatment of inflammation-related diseases. However, their performance in pulpitis and their related mechanisms have yet to be explored. Herein, we prepared dozens of metallic nanoparticles with core-shell structures, and among them, chromium nanoparticles (NanoCr) were selected for their great therapeutic potential for pulpitis disease. NanoCr showed a broad antibacterial spectrum and strong anti-inflammatory function. Antibacterial assays showed that NanoCr could effectively inhibit a variety of common pathogens of oral infection. In vitro experiments offered evidence of the multienzyme activity of NanoCr and its function in suppressing ROS-induced inflammation reactions. The experimental results show that NanoCr has optimal antibacterial and anti-inflammatory properties in in vitro cell models, showing great potential for the treatment of pulpitis. Therefore, the use of NanoCr could become a new therapeutic strategy for clinical pulpitis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Chuanda Zhu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Lidong Gong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese academy of Agriculture, Beijing 100081, P.R. China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Xinrong Zhao
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| |
Collapse
|
2
|
Kinosita Y, Sowa Y. Flagellar polymorphism-dependent bacterial swimming motility in a structured environment. Biophys Physicobiol 2023; 20:e200024. [PMID: 37867560 PMCID: PMC10587448 DOI: 10.2142/biophysico.bppb-v20.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/29/2023] [Indexed: 10/24/2023] Open
Abstract
Most motile bacteria use supramolecular motility machinery called bacterial flagellum, which converts the chemical energy gained from ion flux into mechanical rotation. Bacterial cells sense their external environment through a two-component regulatory system consisting of a histidine kinase and response regulator. Combining these systems allows the cells to move toward favorable environments and away from their repellents. A representative example of flagellar motility is run-and-tumble swimming in Escherichia coli, where the counter-clockwise (CCW) rotation of a flagellar bundle propels the cell forward, and the clockwise (CW) rotation undergoes cell re-orientation (tumbling) upon switching the direction of flagellar motor rotation from CCW to CW. In this mini review, we focus on several types of chemotactic behaviors that respond to changes in flagellar shape and direction of rotation. Moreover, our single-cell analysis demonstrated back-and-forth swimming motility of an original E. coli strain. We propose that polymorphic flagellar changes are required to enhance bacterial movement in a structured environment as a colony spread on an agar plate.
Collapse
Affiliation(s)
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo 184-8584, Japan
| |
Collapse
|
3
|
Morimoto YV, Minamino T. Measurements of the Ion Channel Activity of the Transmembrane Stator Complex in the Bacterial Flagellar Motor. Methods Mol Biol 2023; 2646:83-94. [PMID: 36842108 DOI: 10.1007/978-1-0716-3060-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The bacterial flagellum is driven by a rotational motor located at the base of the flagellum. The stator unit complex conducts cations such as protons (H+) and sodium ions (Na+) along the electrochemical potential across the cytoplasmic membrane and interacts with the rotor to generate the rotational force. Escherichia coli and Salmonella have the H+-type stator complex, which serves as a transmembrane H+ channel that couples H+ flow through an ion channel to torque generation whereas Vibrio and some Bacillus species have the Na+-type stator complex. In this chapter, we describe how to measure the ion conductivity of the transmembrane stator complex over-expressed in E. coli cells using fluorescent indicators. Intensity measurements of fluorescent indicators using either a fluorescence spectrophotometer or microscope allow quantitative detection of changes in the intracellular ion concentrations due to the ion channel activity of the transmembrane protein complex.
Collapse
Affiliation(s)
- Yusuke V Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan.
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Zhao N, Zhang Q, Guo Y, Cui S, Tian Y, Zhang Y, Zhou Y, Wang X. Oral microbiome contributes to the failure of orthodontic temporary anchorage devices (TADs). BMC Oral Health 2023; 23:22. [PMID: 36650527 PMCID: PMC9844000 DOI: 10.1186/s12903-023-02715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The stability of temporary anchorage devices (TADs) is critical in orthodontic clinics. The failure of TADs is multifactorial, and the role of the oral microbiome has not been clearly defined. Herein, we attempted to analyze the contribution of the oral microbiome to the failure of TADs. METHODS Next-generation sequencing was adopted for analyzing the microbiome on the TADs from orthodontic patients. 29 TADs (15 failed TADs and 14 successful TADs) were used for 16S rRNA gene sequencing. A total of 135 TADs (62 failed TADs and 73 successful TADs) were collected to conduct metagenomic sequencing. Additionally, 34 verified samples (18 failed TADs and 16 successful TADs) were collected for quantitative real-time polymerase chain reaction analysis (qRT-PCR). RESULTS Successful and failed TADs demonstrated discrepancies in microbiome structure, composition, and function. Clear separations were found in β-diversity in 16S rRNA gene sequencing as well as metagenomic sequencing (p < 0.05). Metagenomic sequencing showed that Prevotella intermedia, Eikenella corrodens, Parvimonas spp., Neisseria elongata, and Catonella morbi were enriched in the failed groups. qRT-PCR also demonstrated that the absolute bacteria load of Prevotella intermedia was higher in failed TADs (p < 0.05). Considering functional aspects, the failed group showed enriched genes involved in flagellar assembly, bacterial chemotaxis, and oxidative phosphorylation. CONCLUSIONS This study illustrated the compositional and functional differences of microorganisms found on successful and failed TADs, indicating that controlling bacterial adhesion on the surface of TADs is essential for their success rate.
Collapse
Affiliation(s)
- Ningrui Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081 China
| | - Yanning Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Yajing Tian
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Yidan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Xuedong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Beijing, 100081 China
| |
Collapse
|
5
|
Flagellin outer domain dimerization modulates motility in pathogenic and soil bacteria from viscous environments. Nat Commun 2022; 13:1422. [PMID: 35301306 PMCID: PMC8931119 DOI: 10.1038/s41467-022-29069-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 12/01/2022] Open
Abstract
Flagellar filaments function as the propellers of the bacterial flagellum and their supercoiling is key to motility. The outer domains on the surface of the filament are non-critical for motility in many bacteria and their structures and functions are not conserved. Here, we show the atomic cryo-electron microscopy structures for flagellar filaments from enterohemorrhagic Escherichia coli O157:H7, enteropathogenic E. coli O127:H6, Achromobacter, and Sinorhizobium meliloti, where the outer domains dimerize or tetramerize to form either a sheath or a screw-like surface. These dimers are formed by 180° rotations of half of the outer domains. The outer domain sheath (ODS) plays a role in bacterial motility by stabilizing an intermediate waveform and prolonging the tumbling of E. coli cells. Bacteria with these ODS and screw-like flagellar filaments are commonly found in soil and human intestinal environments of relatively high viscosity suggesting a role for the dimerization in these environments. It has been suggested that the outer domains of bacterial flagellins are not needed for motility. Here, the authors show that flagellar filament outer domains from some bacteria have unique structures which can alter the motility of the bacteria.
Collapse
|
6
|
Ishijima A, Okada Y. Information biophysics of gradient sensing in organisms. Biophys Physicobiol 2021; 18:263-264. [PMID: 34909361 PMCID: PMC8639196 DOI: 10.2142/biophysico.bppb-v18.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Akihiko Ishijima
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan.,Department of Cell Biology, Department of Physics, Universal Biology Institute (UBI), and International Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|