1
|
Oliveira JSD, Ribas BR, Ferro AC, Tasso CO, Camargo R, Cavalheiro AJ, Jorge JH. Cryptocarya moschata fractions decrease planktonic cells and biofilms of Candida albicans and Streptococcus mutans. BIOFOULING 2024:1-16. [PMID: 39444328 DOI: 10.1080/08927014.2024.2418466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Extracts of Cryptocarya species have been shown to reduce biofilms, demonstrating their antimicrobial effects. The extracts can be fractionated to optimize their potential. In this study, we evaluated the antimicrobial activity of Cryptocarya moschata fractions against planktonic cells and biofilms of Candida albicans and Streptococcus mutans. Four fractions were prepared: 100% hexane, acetate/hexane 1:1, 100% ethyl acetate, and water. The effect of the fractions on planktonic cells was assessed by counting the colony-forming units per milliliter (CFU/mL). Biofilm tests included CFU/mL, cell metabolic activity, and qualitative analysis using confocal laser scanning microscopy (CLSM). Results were analyzed by the Mann-Whitney U test (α = 0.05). The fractions contained lipophilic constituents, styrylpyrones, glycosylated flavonoids, and alkaloids. Acetate/hexane (1:1) and 100% ethyl acetate fractions reduced the CFU/mL of planktonic C. albicans. C. moschata fractions did not affect planktonic S. mutans. For biofilms, the fractions reduced the CFU/mL (from 2-5 logs) and cell metabolic activity (approximately 80% reduction in a single-species biofilm). CLSM showed the fractions reduced microorganism viability and damaged the extracellular matrix of biofilms. We conclude that the acetate/hexane 1:1 and 100% ethyl acetate C. moschata fractions exhibit antimicrobial effects against biofilms.
Collapse
Affiliation(s)
- Jonatas Silva de Oliveira
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Beatriz Ribeiro Ribas
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Amanda Costa Ferro
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Camilla Olga Tasso
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Rafaelly Camargo
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Alberto José Cavalheiro
- Institute of Chemistry, Department of Organic Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Janaina Habib Jorge
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
2
|
Anitha KV, Krishnan R. Evaluation of flexural strength and microhardness in Vaccinium macrocarpon (cranberry)-added self-cure polymethyl methacrylate dental resin: An in vitro study. J Indian Prosthodont Soc 2024; 24:266-272. [PMID: 38946510 PMCID: PMC11321482 DOI: 10.4103/jips.jips_25_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
AIM Occurrence of denture stomatitis and prosthesis breakage are common problems faced by elderly people wearing removable dentures. To overcome this, several attempts are made to improve the denture material by addition of antimicrobials without compromising original properties. The aim of the study was to evaluate flexural strength and microhardness of self-cured polymethyl methacrylate (PMMA) denture base resin after addition of Vaccinium macrocarpon (commonly called as cranberry), extract as antimicrobial, at varying proportions. STUDY SETTING AND DESIGN Experimental in vitro study. MATERIALS AND METHODS Frozen cranberry fruits were subjected to extraction process in the presence of aqueous solvents. Lyophilized extract was added in proportions of 0, 0.5, 1.0, 1.5, and 2.0 dry wt/wt % into polymer of self-cure PMMA denture base resin. Based on cranberry inclusion, the study comprised one control (0%) and four test groups (0.5%-2%) with total of 100 samples. A three-point bending test for flexural strength was done for fifty study samples (n = 10). Surface of fractured samples was analyzed using a scanning electron microscope (SEM). Microhardness was determined using Vickers hardness test. STATISTICAL ANALYSIS USED One-way statistical ANOVA test was done to find the difference between groups, followed by Tukey's post hoc test for multiple pairwise comparison. RESULTS Flexural strength ranged from 66.80 to 69.28 MPa, and a statistically insignificant difference was observed between groups (P > 0.05). SEM evaluation showed uniformly dispersed strands of cranberry extract in PMMA matrix. With higher concentration, less voids were seen. Vickers microhardness value significantly decreased from 15.96 in the control group to 14.57 with 2% cranberry addition (P < 0.05). CONCLUSION Incorporation of cranberry extract into self-cure PMMA denture base resin, up to 2 dry wt %, did not decline the flexural strength. However, there was a significant decrease in Vickers microhardness values when compared against the control group (0% cranberry inclusion).
Collapse
Affiliation(s)
- K. V. Anitha
- Department of Prosthodontics, SRM Dental College, Chennai, Tamil Nadu, India
| | - Rajkumar Krishnan
- Department of Oral Pathology, SRM Dental College, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Tsopmene UJ, Tokam Kuaté CR, Kayoka-Kabongo PN, Bisso BN, Metopa A, Mofor CT, Dzoyem JP. Antibiofilm Activity of Curcumin and Piperine and Their Synergistic Effects with Antifungals against Candida albicans Clinical Isolates. SCIENTIFICA 2024; 2024:2025557. [PMID: 38449801 PMCID: PMC10917476 DOI: 10.1155/2024/2025557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 03/08/2024]
Abstract
Background Candidiasis is the common name for diseases caused by yeast of the genus Candida. Candida albicans is one of the most implicated species in superficial and invasive candidiasis. Antifungals, polyenes, and azoles have been used to treat candidiasis. However, due to the development of antifungal resistance, research of natural substances with potential antifungal effects at low concentrations or combined is also a possibility. Methods The broth microdilution method was used to evaluate the antifungal activity. The biofilm formation was assessed using the microtiter plate method. The antibiofilm activities were assessed using micro plaque tetrazolium salt assay (MTT). The combination effect of antifungal with natural substances was made using the checkerboard method. Results Among our isolates, clotrimazole was the most resistant, but amphotericin B was the most effective antifungal. The biofilm was formed by all isolates of C. albicans. Curcumin and piperine displayed antibiofilm activity with minimum biofilm inhibitory concentration (MBIC) and minimum eradicating concentration (MBEC) ranging from 64 to 1024 μg/mL and 256 to 2048 μg/mL. In combination, piperine presented double synergistic effects compared to curcumin with all antifungals tested. Curcumin shows more synergistic effect when combined with polyenes than with azoles. However, piperine shows a more synergistic effect when combined with azoles compared to polyenes. Conclusion C. albicans was susceptible to curcumin and piperine both on planktonic cells and biofilm. The combination of curcumin and piperine with antifungals has shown synergistic effects against multiresistant clinical isolates of Candida albicans representing an alternative drug research for the treatment of clinical candidiasis.
Collapse
Affiliation(s)
- Ulrich Joël Tsopmene
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Borel Ndezo Bisso
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Anisel Metopa
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Clautilde Teugwa Mofor
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
4
|
Adnan M, Siddiqui AJ, Ashraf SA, Bardakci F, Alreshidi M, Badraoui R, Noumi E, Tepe B, Sachidanandan M, Patel M. Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation to Elucidate the Molecular Targets and Potential Mechanism of Phoenix dactylifera (Ajwa Dates) against Candidiasis. Pathogens 2023; 12:1369. [PMID: 38003833 PMCID: PMC10674288 DOI: 10.3390/pathogens12111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Candidiasis, caused by opportunistic fungal pathogens of the Candida genus, poses a significant threat to immunocompromised individuals. Natural compounds derived from medicinal plants have gained attention as potential sources of anti-fungal agents. Ajwa dates (Phoenix dactylifera L.) have been recognized for their diverse phytochemical composition and therapeutic potential. In this study, we employed a multi-faceted approach to explore the anti-candidiasis potential of Ajwa dates' phytochemicals. Utilizing network pharmacology, we constructed an interaction network to elucidate the intricate relationships between Ajwa dates phytoconstituents and the Candida-associated molecular targets of humans. Our analysis revealed key nodes in the network (STAT3, IL-2, PTPRC, STAT1, CASP1, ALB, TP53, TLR4, TNF and PPARG), suggesting the potential modulation of several crucial processes (the regulation of the response to a cytokine stimulus, regulation of the inflammatory response, positive regulation of cytokine production, cellular response to external stimulus, etc.) and fungal pathways (Th17 cell differentiation, the Toll-like receptor signaling pathway, the C-type lectin receptor signaling pathway and necroptosis). To validate these findings, molecular docking studies were conducted, revealing the binding affinities of the phytochemicals towards selected Candida protein targets of humans (ALB-rutin (-9.7 kJ/mol), STAT1-rutin (-9.2 kJ/mol), STAT3-isoquercetin (-8.7 kJ/mol), IL2-β-carotene (-8.5 kJ/mol), CASP1-β-carotene (-8.2 kJ/mol), TP53-isoquercetin (-8.8 kJ/mol), PPARG-luteolin (-8.3 kJ/mol), TNF-βcarotene (-7.7 kJ/mol), TLR4-rutin (-7.4 kJ/mol) and PTPRC-rutin (-7.0 kJ/mol)). Furthermore, molecular dynamics simulations of rutin-ALB and rutin-STAT1 complex were performed to gain insights into the stability and dynamics of the identified ligand-target complexes over time. Overall, the results not only contribute to the understanding of the molecular interactions underlying the anti-fungal potential of specific phytochemicals of Ajwa dates in humans but also provide a rational basis for the development of novel therapeutic strategies against candidiasis in humans. This study underscores the significance of network pharmacology, molecular docking and dynamics simulations in accelerating the discovery of natural products as effective anti-fungal agents. However, further experimental validation of the identified compounds is warranted to translate these findings into practical therapeutic applications.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Syed Amir Ashraf
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralik University, Kilis TR-79000, Turkey
| | - Manojkumar Sachidanandan
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Oral Radiology, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| |
Collapse
|
5
|
Wang T, Pan M, Bao M, Bu Q, Yang R, Yang Y, Shao J, Wang C, Li N. Ethyl caffeate combined with fluconazole exhibits efficacy against azole-resistant oropharyngeal candidiasis via the EFGR/JNK/c-JUN signaling pathway. Med Mycol 2023; 61:myad114. [PMID: 37947257 DOI: 10.1093/mmy/myad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Ethyl caffeate (EC) is a phenylpropanoid compound derived from Elephantopus scaber. In our previous work, EC was investigated to have a strong synergistic antifungal effect against azole-resistant strains of Candida albicans when combined with fluconazole (FLU). However, the protective effect and mechanism of EC + FLU on oropharyngeal candidiasis (OPC) caused by drug-resistant strains of C. albicans have not been investigated. This study aimed to investigate the protective effect and mechanism of EC combined with FLU against C. albicans-resistant strains that lead to OPC. An OPC mouse model revealed that EC + FLU treatment reduced fungal load and massive hyphal invasion of tongue tissues, and ameliorated the integrity of the tongue mucosa. Periodic acid-Schiff staining results showed more structural integrity of the tongue tissues and reduced inflammatory cell infiltration after EC + FLU treatment. Phosphorylation of EGFR (epidermal growth factor receptor) and other proteins in the EFGR/JNK (c-Jun N-terminal kinase)/c-JUN (transcription factor Jun) signaling pathway was significantly downregulated by EC + FLU. EGFR and S100A9 mRNA expression were also reduced. The above results were verified in FaDu cells. ELISA results showed that the concentration of inflammatory factors in the cell supernatant was significantly reduced after EC combined with FLU treatment. Molecular docking revealed that EC exhibited high binding energy to EGFR. In conclusion, EC enhances the susceptibility of azole-resistant C. albicans to FLU, and the underlying mechanism is related to the inhibition of the EGFR/JNK/c-JUN signaling pathway. This result suggests that EC has potential to be developed as an antifungal sensitizer to treat OPC caused by azole-resistant C. albicans.
Collapse
Affiliation(s)
- Tianming Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meshan Road, Hefei 230032, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Min Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Mengyuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Qingru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Ruotong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Jing Shao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Changzhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meshan Road, Hefei 230032, China
| |
Collapse
|
6
|
Rashidi M, Bazi A, Ahmadzadeh A, Romeo O, Rezaei-Matehkolaei A, Abastabar M, Haghani I, Mirzaei S. The growth inhibitory and apoptotic effects of umbelliprenin in a mouse model of systemic candidiasis. J Appl Microbiol 2023; 134:lxad201. [PMID: 37669891 DOI: 10.1093/jambio/lxad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023]
Abstract
AIMS Umbelliprenin has shown promising biological activities, including immunoregulatory, anti-inflammatory, and anti-cancer effects. The present study investigated the growth inhibitory and apoptotic effects of umbelliprenin against Candida albicans in a BALB/c mice model of disseminated candidiasis. METHODS AND RESULTS First, an antimicrobial assay via microdilution sensitivity test was performed. Then, twenty-five 6-week-old female BALB/c mice (20 ± 12 g) were divided into five groups of five mice, including one control group (no umbelliprenin treatment) and four experimental groups: C. albicans-infected mice treated with umbelliprenin at the doses of 5, 10, 20, and 40 mg kg -1. The brain, lung, kidney, spleen, and liver tissues were examined for fungal infection and histological lesions, and TUNEL staining was performed to assess apoptosis. The β-1, 3-glucan synthase assay was used to evaluate enzymatic activity, and gene expression analysis was also performed to investigate the transcriptional changes of ERG11, CDR1, ALS1, and HWP1 genes. The MIC of umbelliprenin was 1.5 mg mL-1. Our results showed that at the 40 mg kg -1 dose, umbelliprenin was able to eradicate fungal infection in BALB/c mice. The percentage of apoptotic cells in umbelliprenin-treated groups increased in a concentration-dependent manner. Umbelliprenin (40 mg kg -1) also inhibited the expression of β-1, 3-glucan synthase, and the genes involved in antifungal resistance (CDR1 and ERG11), as well as the expression of the genes encoding adhesins (ALS1 and HWP1). CONCLUSION Our results showed that umbelliprenin could promote antifungal effects, partly via inducing apoptosis.
Collapse
Affiliation(s)
- Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Ali Bazi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Alireza Ahmadzadeh
- Department of Lab Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 ME, Italy
- IRCCS-Centro Neurolesi Bonino-Pulejo, 98124 ME, Italy
| | - Ali Rezaei-Matehkolaei
- Department of Medical Mycology, School of Medicine, Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Sciences, Islamic Azad University Science and Research Branch, Tehran 14778-93855, Iran
| |
Collapse
|
7
|
Bao MY, Li M, Bu QR, Yang Y, Song H, Wang CZ, Wang TM, Li N. The effect of herbal medicine in innate immunity to Candida albicans. Front Immunol 2023; 14:1096383. [PMID: 37483621 PMCID: PMC10359817 DOI: 10.3389/fimmu.2023.1096383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 07/25/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic pathogenic fungus that often causes mucosal and systemic infections. Several pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), have been implicated in the host recognition of C. albicans. These PRRs recognize the pathogen-associated molecular patterns (PAMPs) of C. albicans to activate innate immune cells, thereby rapidly inducing various inflammatory responses by activating intracellular signaling cascades. Herbal medicine and its active components deserve priority development due to their low toxicity and high antibacterial, antiviral and antifungal activities. This review discussed the activities of herbal compounds against C. albicans and their related mechanisms, especially their regulatory role on innate immune cells such as neutrophils, macrophages, and dendritic cells (DCs) implicated in C. albicans infections. Our work aims to find new therapeutic drugs and targets to prevent and treat diseases caused by C. albicans infection with the mechanisms by which this fungus interacts with the innate immune response.
Collapse
Affiliation(s)
- Meng-Yuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qing-Ru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chang-Zhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tian-Ming Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
de Azevedo Pereira FG, Milagres A, Werneck JT, Marques LC, Picciani BLS, Junior AS. Oral candidiasis in patients with hematological diseases: Diagnosis through clinical and cytopathological examinations. Cytopathology 2022; 33:611-617. [PMID: 35603463 DOI: 10.1111/cyt.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study is the first to analyze the prevalence of oral candidiasis in onco-hematological patients by physical and oral cytopathological examinations. METHODS This is a cross-sectional and observational study with a retrospective sample composed of participants hospitalized in the hematology clinic, diagnosed with hematological diseases. All participants were submitted to an oral mucosal examination and scraping from oral mucosa. RESULTS Of the 62 participants, 56.5% were male, 82.3% were white, with mean age of 57 years. Lymphoma was the most common hematological disease (24.2%). In total, 48.4% of the sample was diagnosed with oral candidiasis. Of these participants with oral candidiasis, 13 (21.0%) had clinical diagnosis. Cytopathological analysis revealed more 17 (27.4%) cases, without oral lesion indicative of candidiasis. Erythematous candidiasis (p=0.02), pseudomembranous candidiasis (p<0,001), clinical candidiasis (p<0,001), fibrous hyperplasia (p=0,032), and coated tongue (p=0,012) showed correlation to candidiasis cytopathologic diagnosis. CONCLUSIONS Oral candidiasis is common among patients with hematological disease, and the cytopathological examination proved to be a useful tool, confirming clinical diagnosis of candidiasis and identifying subclinical cases. These data are of great relevance considering the possible complications that these patients may develop such as longer hospitalizations, worsening of the general condition or even death due to candidemia.
Collapse
Affiliation(s)
| | - Adrianna Milagres
- Department of Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
| | - Juliana Tristão Werneck
- Department of Specific Formation, School of Dentistry, Universidade Federal Fluminense, Nova Friburgo, Rio de Janeiro, Brazil
| | - Letícia Côgo Marques
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
| | - Bruna Lavinas Sayed Picciani
- Department of Specific Formation, School of Dentistry, Universidade Federal Fluminense, Nova Friburgo, Rio de Janeiro, Brazil
| | - Arley Silva Junior
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
| |
Collapse
|
9
|
Wang N, Wang L, Zhang C, Tan HY, Zhang Y, Feng Y. Berberine suppresses advanced glycation end products-associated diabetic retinopathy in hyperglycemic mice. Clin Transl Med 2021; 11:e569. [PMID: 34841704 PMCID: PMC8567055 DOI: 10.1002/ctm2.569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Leilei Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,School of Chinese Medicine, Hong Kong Baptists University, Hong Kong, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|