1
|
Liu Y, Yin R, Tian Y, Xu S, Meng X. Curcumin nanopreparations: recent advance in preparation and application. Biomed Mater 2024; 19:052009. [PMID: 39189065 DOI: 10.1088/1748-605x/ad6dc7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Curcumin is a natural polyphenolic compound extracted from turmeric with antibacterial, antioxidant, antitumor, preventive and therapeutic neurological disorders and a variety of bioactivities, which is widely used in the field of food and medicine. However, the drawbacks of curcumin such as poor aqueous solubility and stability have limited the practical application of curcumin. To overcome these defects and enhance its functional properties, various nanoscale systems (liposomes, polymer nanoparticles, protein nanoparticles, solid lipid nanoparticles, metal nanoparticles, etc) have been extensively employed for curcumin encapsulation and delivery. Despite the rapid development of curcumin nanoformulations, there is a lack of comprehensive reviews on their preparation and properties. This review provides an overview of the construction of curcumin nano-delivery systems, mechanisms of action, nanocarrier preparation methods and the applications of curcumin nanocarriers in the food and pharmaceutical fields to provide a theoretical basis and technological support for the efficient bio-utilization, product development and early clinical application of curcumin.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Rui Yin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Shujun Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| |
Collapse
|
2
|
Gasbarri C, Angelini G. Cyclocurcumin as Promising Bioactive Natural Compound: An Overview. Molecules 2024; 29:1451. [PMID: 38611731 PMCID: PMC11013289 DOI: 10.3390/molecules29071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Although identical in molecular formula and weight, curcumin and cyclocurcumin show remarkable differences in their reactivity. Both are natural compounds isolated from the rhizome of turmeric, the former is involved in the diketo/keto-enol tautomerism through the bis-α,β-unsaturated diketone unit according to the polarity of the solvent, while the latter could react by trans-cis isomerization due to the presence of the α,β-unsaturated dihydropyranone moiety. Even if curcumin is generally considered responsible of the therapeutical properties of Curcuma longa L. due to its high content, cyclocurcumin has attracted great interest over the last several decades for its individual behavior and specific features as a bioactive compound. Cyclocurcumin has a hydrophobic nature characterized by fluorescence emission, solvatochromism, and the tendency to form spherical fluorescent aggregates in aqueous solution. Molecular docking analysis reveals the potentiality of cyclocurcumin as antioxidant, enzyme inhibitor, and antiviral agent. Promising biological activities are observed especially in the treatment of degenerative and cardiovascular diseases. Despite the versatility emerging from the data reported herein, the use of cyclocurcumin seems to remain limited in clinical applications mainly because of its low solubility and bioavailability.
Collapse
Affiliation(s)
- Carla Gasbarri
- Department of Pharmacy, University “G. d’Annunzio” of Chieti—Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | | |
Collapse
|
3
|
Moon DO. Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management. Int J Mol Sci 2024; 25:2911. [PMID: 38474160 DOI: 10.3390/ijms25052911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This paper delves into the diverse and significant roles of curcumin, a polyphenolic compound from the Curcuma longa plant, in the context of cancer and inflammatory diseases. Distinguished by its unique molecular structure, curcumin exhibits potent biological activities including anti-inflammatory, antioxidant, and potential anticancer effects. The research comprehensively investigates curcumin's molecular interactions with key proteins involved in cancer progression and the inflammatory response, primarily through molecular docking studies. In cancer, curcumin's effectiveness is determined by examining its interaction with pivotal proteins like CDK2, CK2α, GSK3β, DYRK2, and EGFR, among others. These interactions suggest curcumin's potential role in impeding cancer cell proliferation and survival. Additionally, the paper highlights curcumin's impact on inflammation by examining its influence on proteins such as COX-2, CRP, PDE4, and MD-2, which are central to the inflammatory pathway. In vitro and clinical studies are extensively reviewed, shedding light on curcumin's binding mechanisms, pharmacological impacts, and therapeutic application in various cancers and inflammatory conditions. These studies are pivotal in understanding curcumin's functionality and its potential as a therapeutic agent. Conclusively, this review emphasizes the therapeutic promise of curcumin in treating a wide range of health issues, attributed to its complex chemistry and broad pharmacological properties. The research points towards curcumin's growing importance as a multi-faceted natural compound in the medical and scientific community.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
Shakour N, Hoseinpoor S, Rajabian F, Azimi SG, Iranshahi M, Sadeghi-Aliabadi H, Hadizadeh F. Discovery of non-peptide GLP-1r natural agonists for enhancing coronary safety in type 2 diabetes patients. J Biomol Struct Dyn 2024:1-18. [PMID: 38165453 DOI: 10.1080/07391102.2023.2298734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
This study explores the computational discovery of non-peptide agonists targeting the Glucagon-Like Peptide-1 Receptor (GLP-1R) to enhance the safety of major coronary outcomes in individuals affected by Type 2 Diabetes. The objective is to identify novel compounds that can activate the GLP-1R pathway without the limitations associated with peptide agonists. Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular disease (CVD) and mortality, which is attributed to the accumulation of fat in organs, including the heart. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are frequently used to manage T2DM and could potentially offer cardiovascular benefits. Therefore, this study examines non-peptide agonists of GLP-1R to improve coronary safety in type 2 diabetes patients. After rigorous assessments, two standout candidates were identified, with natural compound 12 emerging as the most promising. This study represents a notable advancement in enhancing the management of coronary outcomes among individuals with type 2 diabetes. The computational methodology employed successfully pinpointed potential GLP-1R natural agonists, providing optimism for the development of safer and more effective therapeutic interventions. Although computational methodologies have provided crucial insights, realizing the full potential of these compounds requires extensive experimental investigations, crucial in advancing therapeutic strategies for this critical patient population.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Hoseinpoor
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabikeh G Azimi
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Pharmaceutical Chemistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Profiling Inflammatory Biomarkers following Curcumin Supplementation: An Umbrella Meta-Analysis of Randomized Clinical Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4875636. [PMID: 36700039 PMCID: PMC9870680 DOI: 10.1155/2023/4875636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
Objective Several meta-analyses have shown that curcumin can reduce inflammatory biomarkers, but the findings are inconsistent. The objective of the present umbrella meta-analysis was to provide a more accurate estimate of the overall effects of curcumin on inflammatory biomarkers. Methods The following international databases were systematically searched until March 20, 2022: PubMed, Scopus, Embase, Web of Science, and Google Scholar. A random-effects model was applied to evaluate the effects of curcumin on inflammatory biomarkers. Meta-analysis studies investigating the effects of curcumin supplementation on inflammatory biomarkers with corresponding effect sizes (ES) and confidence intervals (CI) were included in the umbrella meta-analysis. GRADE (Grading of Recommendations Assessment, Development, and Evaluation) was used to evaluate the certainty of evidence. Results A meta-analyses of ten studies with 5,870 participants indicated a significant decrease in C-reactive protein (CRP) (ES = -0.74; 95% CI: -1.11, -0.37, p < 0.001; I2 = 62.1%, p=0.015), interleukin 6 (IL-6) (ES = -1.07; 95% CI: -1.71, -0.44, p < 0.001; I2 = 75.6%, p < 0.001), and tumour necrosis factor α (TNF-α) levels (ES: -1.92, 95% CI: -2.64, -1.19, p < 0.0; I2 = 18.1%, p=0.296) following curcumin supplementation. Greater effects on CRP and TNF-α were evident in trials with a mean age >45 years and a sample size >300 participants. Conclusion The umbrella of meta-analysis suggests curcumin as a promising agent in reducing inflammation as an adjunctive therapeutic approach in diseases whose pathogenesis is related to a higher level of inflammatory biomarkers.
Collapse
|
6
|
Shakour N, Taheri E, Rajabian F, Tarighi S, Soheili V, Hadizadeh F. Evaluating the Antivirulence Effects of New Thiazolidinedione Compounds Against Pseudomonas aeruginosa PAO1. Microb Drug Resist 2022; 28:1003-1018. [PMID: 36219761 DOI: 10.1089/mdr.2022.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes several serious health problems and numerous forms of virulence. During the treatment of P. aeruginosa infections, the development of multidrug-resistant isolates creates significant clinical problems. Using antivirulence compounds to disrupt pathogenicity rather than killing the bacterium may be an interesting strategy to overcome this problem, because less harsh conditions will exist for the development of resistance. To reduce pathogenicity and biofilm formation, newly synthesized analogs of imidazolyl (8n) and previously synthesized analogs (8a-8m) with a similar backbone [the 5-(imidazolyl-methyl) thiazolidinediones] were tested against pyoverdine and pyocyanin production, protease activity, and biofilm formation. Compared to the positive control group, the best compounds reduced the production of pyoverdine (8n) by 89.57% and pyocyanin (8i) by 22.68%, and protease activity (8n) by 2.80% for PAO1 strain, at a concentration of 10 μM. Moreover, the biofilm formation assay showed a reduction of 87.94% (8i) for PAO1, as well as 30.53% (8d) and 44.65% (8m) for 1074 and 1707 strains, respectively. The compounds used in this study did not show any toxicity in the human dermal fibroblasts and 4T1 cells (viability higher than 90%). The in silico study of these compounds revealed that their antivirulence activity could be due to their interaction with the PqsR, PqsE, and LasR receptors.
Collapse
Affiliation(s)
- Neda Shakour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Taheri
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Tarighi
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Ahangarzadeh N, Shakour N, Rezvanpoor S, Bakherad H, Pakdel MH, Farhadi G, Sepehri S. Design, synthesis, and in silico studies of tetrahydropyrimidine analogs as urease enzyme inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200158. [PMID: 35833485 DOI: 10.1002/ardp.202200158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
The urease enzyme, a metalloenzyme having Ni2+ ions, is recognized in some bacteria, fungi, and plants. Particularly, it is vital to the progress of infections induced by pathogenic microbes, such as Proteus mirabilis and Helicobacter pylori. Herein, we reported the synthesis of a series of tetrahydropyrimidine derivatives and evaluated their antiurease activity. Finally, quantitative and qualitative analyses of the derivatives were performed via in silico studies. Urease inhibitory activity was determined as the reaction of H. pylori urease with different concentrations of compounds, and thiourea was used as a standard compound. Docking and dynamics methodologies were applied to study the interactions of the best compounds with the amino acids in the active site. All compounds showed good to excellent antiurease activity. The potent compounds were not cytotoxic against the HUVEC normal cell line. Based on the docking study, compound 4e with the highest urease inhibitory activity (IC50 = 6.81 ± 1.42 µM) showed chelates with both Ni2+ ions of the urease active site. Further, compound 4f displayed a very good inhibitory activity (IC50 = 8.45 ± 1.64 μM) in comparison to thiourea (IC50 = 22.03 ± 1.24 μM). The molecular docking and dynamics simulation results were correlated with the in vitro assay results. Moreover, the derivatives 4a-n followed Lipinski's rule-of-five and had drug-likeness properties.
Collapse
Affiliation(s)
- Nazli Ahangarzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadaf Rezvanpoor
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad H Pakdel
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghazaleh Farhadi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
8
|
Nurcahyanti ADR, Cokro F, Wulanjati MP, Mahmoud MF, Wink M, Sobeh M. Curcuminoids for Metabolic Syndrome: Meta-Analysis Evidences Toward Personalized Prevention and Treatment Management. Front Nutr 2022; 9:891339. [PMID: 35757255 PMCID: PMC9218575 DOI: 10.3389/fnut.2022.891339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
The metabolic syndrome (MS) is a multifactorial syndrome associated with a significant economic burden and healthcare costs. MS management often requires multiple treatments (polydrug) to ameliorate conditions such as diabetes mellitus, insulin resistance, obesity, cardiovascular diseases, hypertension, and non-alcoholic fatty liver disease (NAFLD). However, various therapeutics and possible drug-drug interactions may also increase the risk of MS by altering lipid and glucose metabolism and promoting weight gain. In addition, the medications cause side effects such as nausea, flatulence, bloating, insomnia, restlessness, asthenia, palpitations, cardiac arrhythmias, dizziness, and blurred vision. Therefore, is important to identify and develop new safe and effective agents based on a multi-target approach to treat and manage MS. Natural products, such as curcumin, have multi-modalities to simultaneously target several factors involved in the development of MS. This review discusses the recent preclinical and clinical findings, and up-to-date meta-analysis from Randomized Controlled Trials regarding the effects of curcumin on MS, as well as the metabonomics and a pharma-metabolomics outlook considering curcumin metabolites, the gut microbiome, and environment for a complementary personalized prevention and treatment for MS management.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Fonny Cokro
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Martha P Wulanjati
- Research Division for Natural Products Technology (BPTBA), National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Mansour Sobeh
- AgroBioSciences Department, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
9
|
Mahata S, Behera SK, Kumar S, Sahoo PK, Sarkar S, Fazil MHUT, Nasare VD. In-silico and in-vitro investigation of STAT3-PIM1 heterodimeric complex: Its mechanism and inhibition by curcumin for cancer therapeutics. Int J Biol Macromol 2022; 208:356-366. [DOI: 10.1016/j.ijbiomac.2022.03.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023]
|
10
|
Shakour N, Hadizadeh F, Kesharwani P, Sahebkar A. 3D-QSAR Studies of 1,2,4-Oxadiazole Derivatives as Sortase A Inhibitors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6380336. [PMID: 34912894 PMCID: PMC8668286 DOI: 10.1155/2021/6380336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/23/2021] [Accepted: 11/13/2021] [Indexed: 12/20/2022]
Abstract
Sortase A (SrtA) is an enzyme that catalyzes the attachment of proteins to the cell wall of Gram-positive bacterial membrane, preventing the spread of pathogenic bacterial strains. Here, one class of oxadiazole compounds was distinguished as an efficient inhibitor of SrtA via the "S. aureus Sortase A" substrate-based virtual screening. The current study on 3D-QSAR was done by utilizing preparation of the structure in the Schrödinger software suite and an assessment of 120 derivatives with the crystal structure of 1,2,4-oxadiazole which was extracted from the PDB data bank. The docking operation of the best compound in terms of pMIC (pMIC = 2.77) was done to determine the drug likeliness and binding form of 1,2,4-oxadiazole derivatives as antibiotics in the active site. Using the kNN-MFA way, seven models of 3D-QSAR were created and amongst them, and one model was selected as the best. The chosen model based on q 2 (pred_r 2) and R 2 values related to the sixth factor of PLS illustrates better and more acceptable external and internal predictions. Values of crossvalidation (pred_r 2), validation (q 2), and F were observed 0.5479, 0.6319, and 179.0, respectively, for a test group including 24 molecules and the training group including 96 molecules. The external reliability outcomes showed that the acceptable and the selective 3D-QSAR model had a high predictive potential (R 2 = 0.9235) which was confirmed by the Y-randomization test. Besides, the model applicability domain was described successfully to validate the estimation of the model.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|