1
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YAG, Kornaros M, Sun J. A review of the fungal polysaccharides as natural biopolymers: Current applications and future perspective. Int J Biol Macromol 2024; 273:132986. [PMID: 38866286 DOI: 10.1016/j.ijbiomac.2024.132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed H M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ghassan A Naji
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; College of Dentistry, The Iraqia University, Baghdad, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Wang D, Zhang M, Law CL, Zhang L. Natural deep eutectic solvents for the extraction of lentinan from shiitake mushroom: COSMO-RS screening and ANN-GA optimizing conditions. Food Chem 2024; 430:136990. [PMID: 37536067 DOI: 10.1016/j.foodchem.2023.136990] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Using natural deep eutectic solvents (NDES) for green extraction of lentinan from shiitake mushroom is a high-efficiency method. However, empirical and trial-and-error methods commonly used to select suitable NDES are unconvincing and time-consuming. Conductor-like screening model for realistic solvation (COSMO-RS) is helpful for the priori design of NDES by predicting the solubility of biomolecules. In this study, 372 NDES were used to evaluate lentinan dissolution capability via COSMO-RS. The results showed that the solvent formed by carnitine (15 wt%), urea (40.8 wt%), and water (44.2 wt%) exhibited the best performance for the extraction of lentinan. In the extraction stage, an artificial neural network coupled with genetic algorithm (ANN-GA) was developed to optimize the extraction conditions and to analyze their interaction effects on lentinan content. Therefore, COSMO-RS and ANN-GA can be used as powerful tools for solvent screening and extraction process optimization, which can be extended to various bioactive substance extraction.
Collapse
Affiliation(s)
- Dayuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia
| | - Lujun Zhang
- Shandong Qihe Biotechnology Co., Ltd, 255022 Zibo, China
| |
Collapse
|
3
|
Joseph C, Batra R, Selvasekaran P, Chidambaram R. Low calorie cocoa-based products: a short review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2931-2939. [PMID: 35872736 PMCID: PMC9304490 DOI: 10.1007/s13197-021-05223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 06/15/2023]
Abstract
Globally, cocoa is considered an extensively consumed flavor across the food and beverage industry. However, the majority of cocoa products have a large amount of sugar and fat content. Therefore, manufacturers of cocoa-based products are focusing on the commercialization of healthier and innovative cocoa products that contain sugar and fat. High-quality and low-calorie cocoa products can be developed using the right ingredients which can replace fat and sugar without negative impact on the product characteristics. For sugar replacement nutritive sweeteners or sugar alcohols, non-nutritive sweeteners or high potency sweeteners and low digestibility carbohydrates are generally used. For fat substitution cocoa butter equivalents, cocoa butter replacers, cocoa butter substitutes along with vegetable fat and oil replacers are used. This review discusses the effect of sugar and fat substitution on the textural and rheological properties, sensory acceptance, and calorific value of the end cocoa-based products.
Collapse
Affiliation(s)
- Cheryl Joseph
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| | - Rishika Batra
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| | - Pavidharshini Selvasekaran
- Instrumental and Food Analysis Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| | - Ramalingam Chidambaram
- Instrumental and Food Analysis Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| |
Collapse
|