1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Wenzel L, Hoffmann M, Rapp E, Rexer TFT, Reichl U. Cell-free N-glycosylation of peptides using synthetic lipid-linked hybrid and complex N-glycans. Front Mol Biosci 2023; 10:1266431. [PMID: 37767159 PMCID: PMC10520871 DOI: 10.3389/fmolb.2023.1266431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free, chemoenzymatic platforms are emerging technologies towards generating glycoconjugates with defined and homogeneous glycoforms. Recombinant oligosaccharyltransferases can be applied to glycosylate "empty," i.e., aglycosyalted, peptides and proteins. While bacterial oligosaccharlytransferases have been extensively investigated, only recently a recombinant eukaryotic single-subunit oligosaccharyltransferase has been successfully used to in vitro N-glycosylate peptides. However, its applicability towards synthesizing full-length glycoproteins and utilizing glycans beyond mannose-type glycans for the transfer have not be determined. Here, we show for the first time the synthesis of hybrid- and complex-type glycans using synthetic lipid carriers as substrates for in vitro N-glycosylation reactions. For this purpose, transmembrane-deleted human β-1,2 N-acetylglucosamintransferase I and II (MGAT1ΔTM and MGAT2ΔTM) and β-1,4-galactosyltransferase (GalTΔTM) have been expressed in Escherichia coli and used to extend an existing multi-enzyme cascade. Both hybrid and agalactosylated complex structures were transferred to the N-glycosylation consensus sequence of peptides (10 amino acids: G-S-D-A-N-Y-T-Y-T-Q) by the recombinant oligosaccharyltransferase STT3A from Trypanosoma brucei.
Collapse
Affiliation(s)
- Lisa Wenzel
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Marcus Hoffmann
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Erdmann Rapp
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Thomas F. T. Rexer
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
5
|
Lageveen-Kammeijer GSM, Rapp E, Chang D, Rudd PM, Kettner C, Zaia J. The minimum information required for a glycomics experiment (MIRAGE): reporting guidelines for capillary electrophoresis. Glycobiology 2022; 32:580-587. [DOI: 10.1093/glycob/cwac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative to standardize the reporting of glycoanalytical methods and to assess their reproducibility. To date, the MIRAGE Commission has published several reporting guidelines that describe what information should be provided for sample preparation methods, mass spectrometry methods, liquid chromatography (LC) analysis, exoglycosidase digestions, glycan microarray methods and nuclear magnetic resonance methods. Here we present the first version of reporting guidelines for glyco(proteo)mics analysis by capillary electrophoresis (CE) for standardized and high-quality reporting of experimental conditions in the scientific literature. The guidelines cover all aspects of a glyco(proteo)mics CE experiment including sample preparation, CE operation mode (CZE, CGE, CEC, MEKC, cIEF, cITP), instrument configuration, capillary separation conditions, detection, data analysis, and experimental descriptors. These guidelines are linked to other MIRAGE guidelines and are freely available through the project website https://www.beilstein-institut.de/en/projects/mirage/guidelines/#ce_analysis (doi:10.3762/mirage.7).
Collapse
Affiliation(s)
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestrasse 20 – ZENIT, 39120, Magdeburg, Germany
| | - Deborah Chang
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, 715 Albany Street, Boston, MA 02118, USA
| | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore
| | - Carsten Kettner
- Beilstein-Institut, Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, 715 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
6
|
Hinterholzer A, Moises J, Regl C, Schwap S, Rapp E, Huber CG, Schubert M. Unambiguous identification of α-Gal epitopes in intact monoclonal antibodies by NMR spectroscopy. MAbs 2022; 14:2132977. [PMID: 36239533 PMCID: PMC9578466 DOI: 10.1080/19420862.2022.2132977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The α-Gal epitope consisting of the terminal trisaccharide Galα1,3Galβ1,4GlcNAc exposed on cell or protein surfaces can cause severe immune reactions, such as hypersensitivity reactions, in humans. This epitope is also called the xenotransplantation epitope because it is one of the main reasons for the rejection of non-human organ transplants by the human innate immune response. Recombinant therapeutic proteins expressed in murine cell lines may contain α-Gal epitopes, and therefore their absence or presence needs to be tightly monitored to minimize any undesired adverse effects. The analytical identification of α-Gal epitopes in glycoproteins using the common standard techniques based on liquid chromatography and mass spectrometry is challenging, mainly due to the isobaricity of hexose stereoisomers. Here, we present a straightforward NMR approach to detect the presence of α-Gal in biotherapeutics based on a quick screen with sensitive 1H-1H TOCSY spectra followed by a confirmation using 1H-13C HSQC spectra.Abbreviations: α-Gal: α1,3-linked galactose; AGC: automatic gain control; CHO: Chinese hamster ovary; CE: capillary electrophoreses coupled to mass spectrometry; COSY: correlation spectroscopy; DSS: 2,2-dimethyl-2-silapentane-5-sulfonate; DTT: dithiothreitol; GlcNAc: N-acetyl glusomamine; HCD: higher-energy collisional dissociation; HMBC: heteronuclear multiple-bond correlation; HPLC: high-performance liquid chromatography; HSQC: heteronuclear single-quantum corre; LacNAc: N-acetyl lactosamine; mAb: monoclonal antibody; MS: mass spectrometry; NMR: nuclear magnetic resonance; NOESY: 2D) nuclear Overhauser spectroscopy; PEG: polyethylenglycol; pH*: observed pH meter reading without correction for isotope effects; PTM: post-translational modification; TCEP: tris(2-carboxyethyl) phosphine hydrochloride; TOCSY: total correlation spectroscopy; xCGE-LIF: multiplex capillary gel electrophoresis with laser-induced fluorescence detection.
Collapse
Affiliation(s)
- Arthur Hinterholzer
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria,Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Jennifer Moises
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Christof Regl
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria,Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Sebastian Schwap
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria,Bundesrealgymnasium Salzburg, Salzburg, Austria
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestraße, Magdeburg, Germany,Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Christian G. Huber
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria,Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Mario Schubert
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria,Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria,CONTACT Mario Schubert Department of Biosciences and Medical Biology,University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|