1
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
2
|
de Lima IBQ, Cardozo PL, Fahel JS, Lacerda JPS, Miranda AS, Teixeira AL, Ribeiro FM. Blockade of mGluR5 in astrocytes derived from human iPSCs modulates astrocytic function and increases phagocytosis. Front Immunol 2023; 14:1283331. [PMID: 38146365 PMCID: PMC10749358 DOI: 10.3389/fimmu.2023.1283331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
TNF-α is essential for induction and maintenance of inflammatory responses and its dysregulation is associated with susceptibility to various pathogens that infect the central nervous system. Activation of both microglia and astrocytes leads to TNF-α production, which in turn triggers further activation of these cells. Astrocytes have been implicated in the pathophysiology of a wide range of neurodegenerative diseases with either harmful or protective roles, as these cells are capable of secreting several inflammatory factors and also promote synapse elimination and remodeling. These responses are possible because they sense their surroundings via several receptors, including the metabotropic glutamate receptor 5 (mGluR5). Under neuroinflammatory conditions, mGluR5 activation in astrocytes can be neuroprotective or have the opposite effect. In the current study, we investigated the role of mGluR5 in hiPSC-derived astrocytes subjected to pro-inflammatory stimulation by recombinant TNF-α (rTNF-α). Our results show that mGluR5 blockade by CTEP decreases the secreted levels of pro-inflammatory cytokines (IL-6 and IL-8) following short rTNF-α stimulation, although this effect subsides with time. Additionally, CTEP enhances synaptoneurosome phagocytosis by astrocytes in both non-stimulated and rTNF-α-stimulated conditions, indicating that mGluR5 blockade alone is enough to drive synaptic material engulfment. Finally, mGluR5 antagonism as well as rTNF-α stimulation augment the expression of the reactivity marker SERPINA3 and reduces the expression of synaptogenic molecules. Altogether, these data suggest a complex role for mGluR5 in human astrocytes, since its blockade may have beneficial and detrimental effects under inflammatory conditions.
Collapse
Affiliation(s)
- Izabella B. Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo L. Cardozo
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julia S. Fahel
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P. S. Lacerda
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline S. Miranda
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2023:1-18. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Objective: This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia.Methods: The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed.Results and Conclusions: This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
4
|
Guebel DV. Human hippocampal astrocytes: Computational dissection of their transcriptome, sexual differences and exosomes across ageing and mild-cognitive impairment. Eur J Neurosci 2023; 58:2677-2707. [PMID: 37427765 DOI: 10.1111/ejn.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/20/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
The role of astrocytes in Alzheimer's disease is often disregarded. Hence, characterization of astrocytes along their early evolution toward Alzheimer would be greatly beneficial. However, due to their exquisite responsiveness, in vivo studies are difficult. So public microarray data of hippocampal homogenates from (healthy) young, (healthy) elder and elder with mild cognitive impairment (MCI) were subjected to re-analysis by a multi-step computational pipeline. Ontologies and pathway analyses were compared after determining the differential genes that, belonging to astrocytes, have splice forms. Likewise, the subset of molecules exportable to exosomes was also determined. The results showed that astrocyte's phenotypes changed significantly. While already 'activated' astrocytes were found in the younger group, major changes occurred during ageing (increased vascular remodelling and response to mechanical stimulus, diminished long-term potentiation and increased long-term depression). MCI's astrocytes showed some 'rejuvenated' features, but their sensitivity to shear stress was markedly lost. Importantly, most of the changes showed to be sex biassed. Men's astrocytes are enriched in a type 'endfeet-astrocytome', whereas women's astrocytes appear close to the 'scar-forming' type (prone to endothelial dysfunction, hypercholesterolemia, loss of glutamatergic synapses, Ca+2 dysregulation, hypoxia, oxidative stress and 'pro-coagulant' phenotype). In conclusion, the computational dissection of the networks based on the hippocampal gene isoforms provides a relevant proxy to in vivo astrocytes, also revealing the occurrence of sexual differences. Analyses of the astrocytic exosomes did not provide an acceptable approximation to the overall functioning of astrocytes in the hippocampus, probably due to the selective cellular mechanisms which charge the cargo molecules.
Collapse
|
5
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
6
|
Nordberg A, Semyanov A, Parpura V, Zorec R. Alexei Verkhratsky, the Philosopher of Neuroglia. Preface for the Honorary Issue of Neurochemical Research. Neurochem Res 2023; 48:1009-1014. [PMID: 36899208 DOI: 10.1007/s11064-023-03894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, 314033, Zhejiang, China
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Robert Zorec
- Medical Faculty & Celica Biomedical, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022; 10:1236. [PMID: 35740258 PMCID: PMC9219769 DOI: 10.3390/biomedicines10061236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer's disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1-42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1-42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1-42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1-42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.
Collapse
Affiliation(s)
- Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | | | - Giulia Federica Mancini
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Università Telematica Giustino Fortunato, 82100 Benevento, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| |
Collapse
|
8
|
De Luca C, Virtuoso A, Korai SA, Cirillo R, Gargano F, Papa M, Cirillo G. Altered Spinal Homeostasis and Maladaptive Plasticity in GFAP Null Mice Following Peripheral Nerve Injury. Cells 2022; 11:cells11071224. [PMID: 35406788 PMCID: PMC8997460 DOI: 10.3390/cells11071224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
The maladaptive response of the central nervous system (CNS) following nerve injury is primarily linked to the activation of glial cells (reactive gliosis) that produce an inflammatory reaction and a wide cellular morpho-structural and functional/metabolic remodeling. Glial acidic fibrillary protein (GFAP), a major protein constituent of astrocyte intermediate filaments (IFs), is the hallmark of the reactive astrocytes, has pleiotropic functions and is significantly upregulated in the spinal cord after nerve injury. Here, we investigated the specific role of GFAP in glial reaction and maladaptive spinal cord plasticity following sciatic nerve spared nerve injury (SNI) in GFAP KO and wild-type (WT) animals. We evaluated the neuropathic behavior (thermal hyperalgesia, allodynia) and the expression of glial (vimentin, Iba1) and glutamate/GABA system markers (GLAST, GLT1, EAAC1, vGLUT, vGAT, GAD) in lumbar spinal cord sections of KO/WT animals. SNI induced neuropathic behavior in both GFAP KO and WT mice, paralleled by intense microglial reaction (Iba1 expression more pronounced in KO mice), reactive astrocytosis (vimentin increase) and expression remodeling of glial/neuronal glutamate/GABA transporters. In conclusion, it is conceivable that the lack of GFAP could be detrimental to the CNS as it lacks a critical sensor for neuroinflammation and morpho-functional–metabolic rewiring after nerve injury. Understanding the maladaptive morpho-functional changes of glial cells could represent the first step for a new glial-based targeted approach for mechanisms of disease in the CNS.
Collapse
Affiliation(s)
- Ciro De Luca
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
| | - Assunta Virtuoso
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
| | - Sohaib Ali Korai
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
| | - Raffaella Cirillo
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
| | - Francesca Gargano
- Unit of Anesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Michele Papa
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
- SYSBIO Centre of Systems Biology ISBE.ITALY, University of Milano-Bicocca, 20126 Milano, Italy
| | - Giovanni Cirillo
- Neural Network Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.); (S.A.K.); (R.C.); (M.P.)
- Correspondence: ; Tel.: +39-081-5666008
| |
Collapse
|
9
|
Zhang Y, Sun YY, Xu M, Shen LL, Xia CL. The Stem Cell Potential of O-2A Lineage Astroglia. Dev Neurosci 2022; 44:487-497. [PMID: 35537406 DOI: 10.1159/000524921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Astrocytes are the most common glial type in the central nervous system. They play pivotal roles in neurophysiological and neuropathological processes. Mounting evidence indicates that astrocytes may act as neural stem cells and contribute to adult neurogenesis. In previous reports, freshly isolated O-2A progenitors were shown to revert to neural stem-like cells (NSLCs) when cultured with a serum-containing glial medium or bone morphogenic proteins for 3 days and with basic fibroblast growth factor consecutively. NSLCs possess self-renewal and multipotential capacities that can give rise to neurons and glial cells, which suggests that they have stem cell-like properties. However, the underlying molecular mechanisms and cell fate commitment when exposed to a neural conditioned medium remain obscure. In this study, we demonstrated that NSLCs grown in the serum-containing neurobasal medium can differentiate into induced neural-like cells (iNLCs). It was noteworthy that astroglia mixed in these cells, particularly in iNLCs, were gradually replaced by neural phenotypes during this glia-neuron conversion. Remarkably, these glial cells can maintain high levels of proliferation and self-renewal ability by activating the NF-κB and MAPK signals. Finally, we found that Notch, STAT3, autophagy, bHLH, and Wnt signals appear to be critical modulators of these intricate events. Altogether, these data demonstrate that O-2A lineage astroglia can function as neural stem cells and display neurogenic plasticity. Dissecting the regulatory pathways involved in these processes is essential to the understanding of glial cell fate and its precise functions. This finding may foster a better understanding of astrocytic heterogeneity and lead to innovative ways to readily apply stem-like astroglia cells as candidate cell sources for neural repair.
Collapse
Affiliation(s)
- Ye Zhang
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yan-Yun Sun
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Min Xu
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ling-Ling Shen
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chun-Lin Xia
- Cytoneurobiology Unit and Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|