1
|
Mitra P, Deshmukh AS. Proteostasis is a key driver of the pathogenesis in Apicomplexa. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119824. [PMID: 39168412 DOI: 10.1016/j.bbamcr.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.
Collapse
Affiliation(s)
- Pallabi Mitra
- BRIC-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | | |
Collapse
|
2
|
Fraering J, Salnot V, Gautier EF, Ezinmegnon S, Argy N, Peoc'h K, Manceau H, Alao J, Guillonneau F, Migot-Nabias F, Bertin GI, Kamaliddin C. Infected erythrocytes and plasma proteomics reveal a specific protein signature of severe malaria. EMBO Mol Med 2024; 16:319-333. [PMID: 38297098 PMCID: PMC10897182 DOI: 10.1038/s44321-023-00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024] Open
Abstract
Cerebral malaria (CM), the most lethal complication of Plasmodium falciparum severe malaria (SM), remains fatal for 15-25% of affected children despite the availability of treatment. P. falciparum infects and multiplies in erythrocytes, contributing to anemia, parasite sequestration, and inflammation. An unbiased proteomic assessment of infected erythrocytes and plasma samples from 24 Beninese children was performed to study the complex mechanisms underlying CM. A significant down-regulation of proteins from the ubiquitin-proteasome pathway and an up-regulation of the erythroid precursor marker transferrin receptor protein 1 (TFRC) were associated with infected erythrocytes from CM patients. At the plasma level, the samples clustered according to clinical presentation. Significantly, increased levels of the 20S proteasome components were associated with SM. Targeted quantification assays confirmed these findings on a larger cohort (n = 340). These findings suggest that parasites causing CM preferentially infect reticulocytes or erythroblasts and alter their maturation. Importantly, the host plasma proteome serves as a specific signature of SM and presents a remarkable opportunity for developing innovative diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Jeremy Fraering
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
| | - Virginie Salnot
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
| | - Emilie-Fleur Gautier
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
- Institut Imagine-INSERM U1163, Hôpital Necker, Université Paris Cité, F-75015, Paris, France
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Sem Ezinmegnon
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Nicolas Argy
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France
- Laboratoire de parasitologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Katell Peoc'h
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
- Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, APHP, Paris, France
- Centre de Recherche sur l'Inflammation, UFR de Médecine Xavier Bichat, Université Paris Cité, INSERM UMR1149, Paris, France
| | - Hana Manceau
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
- Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, APHP, Paris, France
- Département de Biochimie, Hôpital Universitaire Beaujon, APHP, Clichy, France
| | - Jules Alao
- Service de Pédiatrie, Centre Hospitalier Universitaire de la Mère et de l'Enfant-Lagune de Cotonou, Cotonou, Benin
| | - François Guillonneau
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
- Unité OncoProtéomique, Institut de Cancérologie de l'Ouest, F-49055, Angers, France
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | | | - Gwladys I Bertin
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France.
| | - Claire Kamaliddin
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France.
- Cumming School of Medicine, The University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
An Undefined Interaction between Polyamines and Heat Shock Proteins Leads to Cellular Protection in Plasmodium falciparum and Proliferating Cells in Various Organisms. Molecules 2023; 28:molecules28041686. [PMID: 36838674 PMCID: PMC9958663 DOI: 10.3390/molecules28041686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Environmental stimuli can distress the internal reaction of cells and their normal function. To react promptly to sudden environmental changes, a cascade of heat shock proteins (Hsps) functions to protect and act as housekeepers inside the cells. In parallel to the heat shock response, the metabolic polyamine (PA) status changes. Here, we discuss possible ways of putative interactions between Hsps and polyamines in a wide lineage of eukaryotic model organisms with a particular focus on parasitic protozoa such as Plasmodium falciparum (P. falciparum). The supposed interaction between polyamines and Hsps may protect the parasite from the sudden change in temperature during transmission from the female Anopheles mosquito to a human host. Recent experiments performed with the spermidine mimetic inhibitor 15-deoxyspergualine in Plasmodium in vitro cultures show that the drug binds to the C-terminal EEVD motif of Hsp70. This leads to inhibition of protein biosynthesis caused by prevention of eIF5A2 phosphorylation and eukaryotic initiation factor 5A (eIF5A) modification. These observations provide further evidence that PAs are involved in the regulation of protein biosynthesis of Hsps to achieve a protective effect for the parasite during transmission.
Collapse
|
4
|
Almaazmi SY, Singh H, Dutta T, Blatch GL. Exported J domain proteins of the human malaria parasite. Front Mol Biosci 2022; 9:978663. [PMID: 36120546 PMCID: PMC9470956 DOI: 10.3389/fmolb.2022.978663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The heat shock protein 40 (Hsp40) family, also called J domain proteins (JDPs), regulate their Hsp70 partners by ensuring that they are engaging the right substrate at the right time and in the right location within the cell. A number of JDPs can serve as co-chaperone for a particular Hsp70, and so one generally finds many more JDPs than Hsp70s in the cell. In humans there are 13 Hsp70s and 49 JDPs. The human malaria parasite, Plasmodium falciparum, has dedicated an unusually large proportion of its genome to molecular chaperones, with a disproportionately high number of JDPs (PfJDPs) of 49 members. Interestingly, just under half of the PfJDPs are exported into the host cell during the asexual stage of the life cycle, when the malaria parasite invades mature red blood cells. Recent evidence suggests that these PfJDPs may be functionalizing both host and parasite Hsp70s within the infected red blood cell, and thereby driving the renovation of the host cell towards pathological ends. PfJDPs have been found to localize to the host cytosol, mobile structures within the host cytosol (so called “J Dots”), the host plasma membrane, and specialized structures associated with malaria pathology such as the knobs. A number of these exported PfJDPs are essential, and there is growing experimental evidence that they are important for the survival and pathogenesis of the malaria parasite. This review critiques our understanding of the important role these exported PfJDPs play at the host-parasite interface.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Tanima Dutta
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- PathWest Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- *Correspondence: Gregory L. Blatch,
| |
Collapse
|