Fang X, Deng HH, Kuang T, Xu X, Lee J, Gateno J, Yan P. Patient-specific reference model estimation for orthognathic surgical planning.
Int J Comput Assist Radiol Surg 2024;
19:1439-1447. [PMID:
38869779 DOI:
10.1007/s11548-024-03123-0]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/22/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE
Accurate estimation of reference bony shape models is fundamental for orthognathic surgical planning. Existing methods to derive this model are of two types: one determines the reference model by estimating the deformation field to correct the patient's deformed jaw, often introducing distortions in the predicted reference model; The other derives the reference model using a linear combination of their landmarks/vertices but overlooks the intricate nonlinear relationship between the subjects, compromising the model's precision and quality.
METHODS
We have created a self-supervised learning framework to estimate the reference model. The core of this framework is a deep query network, which estimates the similarity scores between the patient's midface and those of the normal subjects in a high-dimensional space. Subsequently, it aggregates high-dimensional features of these subjects and projects these features back to 3D structures, ultimately achieving a patient-specific reference model.
RESULTS
Our approach was trained using a dataset of 51 normal subjects and tested on 30 patient subjects to estimate their reference models. Performance assessment against the actual post-operative bone revealed a mean Chamfer distance error of 2.25 mm and an average surface distance error of 2.30 mm across the patient subjects.
CONCLUSION
Our proposed method emphasizes the correlation between the patients and the normal subjects in a high-dimensional space, facilitating the generation of the patient-specific reference model. Both qualitative and quantitative results demonstrate its superiority over current state-of-the-art methods in reference model estimation.
Collapse