1
|
Bavaresco L, Zamboni M, Squeri C, Xu S, Abramowicz A, Lucini L. Chitosan and grape secondary metabolites: A proteomics and metabolomics approach. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170901004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
2
|
Bioactivity of Chitosan Derivatives. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Edirisinghe M, Ali A, Maqbool M, Alderson PG. Chitosan controls postharvest anthracnose in bell pepper by activating defense-related enzymes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:4078-83. [PMID: 25477684 PMCID: PMC4252448 DOI: 10.1007/s13197-012-0907-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/03/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
Anthracnose, a postharvest disease caused by the fungus Colletotrichum capsici is the most devastating disease of bell pepper that causes great economic losses especially in tropical climates. Therefore, the objective of this study was to evaluate the antifungal properties of chitosan (low molecular weight from crab shell, Mw: 50 kDa and 75-85 % deacetylated) against anthracnose by inducing defense-related enzymes. The concentrations of 0, 0.5, 1.0, 1.5 and 2.0 % chitosan were used to control the fungus in vitro and postharvest. There was a reduction in C. capsici mycelial growth and the highest chitosan concentration (2.0 %) reduced the growth by 70 % after 7 days incubation. In germination test, the concentration of 1.5 and 2.0 % chitosan reduced spore germination in C. capsici between 80 % and 84 %, respectively. In postharvest trial the concentration of 1.5 % decreased the anthracnose severity in pepper fruit by approximately 76 % after 28 days of storage (10 ± 1 °C; 80 % RH). For enzymatic activities, the concentration of 1.5 and 2.0 % chitosan increased the polyphenol oxidase (PPO), peroxidase (POD) and total phenolics in inoculated bell pepper during storage. Based on these results, the chitosan presents antifungal properties against C. capsici, as well as potential to induce resistance on bell pepper.
Collapse
Affiliation(s)
- Madushani Edirisinghe
- />Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Semenyih, 43500 Selangor Darul Ehsan Malaysia
| | - Asgar Ali
- />Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Semenyih, 43500 Selangor Darul Ehsan Malaysia
| | - Mehdi Maqbool
- />Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Semenyih, 43500 Selangor Darul Ehsan Malaysia
| | - Peter G. Alderson
- />School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| |
Collapse
|
4
|
Bioactivity of Chitosan Derivative. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_17-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Rambabu S, Gueddari NEE, Moerschbacher BM, Podile AR. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 2013; 35:29-43. [PMID: 24020506 DOI: 10.3109/07388551.2013.798255] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Collapse
Affiliation(s)
- Subha Narayan Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad , Hyderabad , India and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Petanović R, Kielkiewicz M. Plant-eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 51:61-80. [PMID: 20229098 DOI: 10.1007/s10493-010-9351-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 02/26/2010] [Indexed: 05/08/2023]
Abstract
This review is a comprehensive study of recent advances related to cytological, biochemical and physiological changes induced in plants in response to eriophyoid mite attack. It has been shown that responses of host plants to eriophyoids are variable. Most of the variability is due to individual eriophyoid mite-plant interactions. Usually, the direction and intensity of changes in eriophyoid-infested plant organs depend on mite genotype, density, or the feeding period, and are strongly differentiated relative to host plant species, cultivar, age and location. Although the mechanisms of changes elicited by eriophyoid mites within plants are not fully understood, in many cases the qualitative and quantitative biochemical status of mite-infested plants are known to affect the performance of consecutive herbivorous arthropods. In future, elucidation of the pathways from eriophyoid mite damage to plant gene activation will be necessary to clarify plant responses and to explain variation in plant tissue damage at the feeding and adjacent sites.
Collapse
Affiliation(s)
- Radmila Petanović
- Department of Entomology and Agricultural Zoology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun 11081, Serbia.
| | | |
Collapse
|
7
|
Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N. Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 2009; 9:610-24. [PMID: 19132683 DOI: 10.1002/pmic.200800386] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polyphenols, including stilbenes and flavonoids, are an essential part of human diet and constitute one of the most abundant and ubiquitous groups of plant secondary metabolites, and their level is inducible by stress, fungal attack or biotic and abiotic elicitors. Proteomic analysis of Vitis vinifera (L.) cultivar (cv.) Barbera grape cell suspensions, showed that the amount of 73 proteins consistently changed in 50 microg/mL chitosan-treated samples compared with controls, or between the two controls, of which 56 were identified by MS analyses. In particular, de-novo synthesis and/or accumulation of stilbene synthase proteins were promoted by chitosan which also stimulated trans-resveratrol endogenous accumulation and decreased its release into the culture medium. No influence was shown on cis-resveratrol. There was no effect on the accumulation of total resveratrol mono-glucosides (trans- and cis-piceid and trans- and cis-resveratroloside). Throughout the observation period the upregulation of phenylalanine ammonia lyase, chalcone synthase, chalcone-flavanone isomerase (CHI) transcript expression levels well correlated with CHI protein amount and with the accumulation of anthocyanins. Chitosan treatment strongly increased the expression of eleven proteins of the pathogenesis related protein-10 family, as well as their mRNA levels.
Collapse
Affiliation(s)
- Maura Ferri
- Department of Experimental Evolutionary Biology and Interdepartmental Centre for Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Lee MO, Cho K, Kim SH, Jeong SH, Kim JA, Jung YH, Shim J, Shibato J, Rakwal R, Tamogami S, Kubo A, Agrawal GK, Jwa NS. Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. PLANTA 2008; 4:448-50. [PMID: 18066586 DOI: 10.1007/s00425-007-0672-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/15/2007] [Indexed: 05/18/2023]
Abstract
We report isolation and transcriptional profiling of rice (Oryza sativa L.) mitogen-activated protein kinase (MAPK), OsSIPK (salicylic acid-induced protein kinase). OsSIPK gene is located on chromosome 6 most probably existing as a single copy in the rice genome, and encodes 398 amino acid polypeptide having the MAPK family signature and phosphorylation activation motif TEY. Steady state mRNA analyses of OsSIPK showed weak constitutive expression in leaves of 2-week-old rice seedlings. A time course (30-120 min) experiment using a variety of elicitors and stresses revealed that the OsSIPK mRNA is strongly induced by jasmonic acid (JA), salicylic acid (SA), ethephon, abscisic acid, cycloheximide (CHX), JA/SA + CHX, cantharidin, okadaic acid, hydrogen peroxide, chitosan, sodium chloride, and cold stress (12 degrees C), but not with wounding by cut, gaseous pollutants ozone, and sulfur dioxide, high temperature, ultraviolet C irradiation, sucrose, and drought. Its transcription was also found to be tissue-specifically regulated, and followed a rhythmic dark induction in leaves. Finally, we showed that the OsSIPK protein is localized to the nucleus. From these results, OsSIPK can be implicated in diverse stimuli-responsive signaling cascades and transcription of certain genes.
Collapse
Affiliation(s)
- Mi-Ok Lee
- Department of Molecular Biology, College of Natural Science, Sejong University, Gwangjin-Gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Agrawal GK, Rakwal R. Rice proteomics: a cornerstone for cereal food crop proteomes. MASS SPECTROMETRY REVIEWS 2006; 25:1-53. [PMID: 15957154 DOI: 10.1002/mas.20056] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proteomics-a systematic study of proteins present in a cell, tissue, organ, or organism at a particular moment during the life cycle-that began with classical two-dimensional electrophoresis and its advancement during the 1990s, has been revolutionized by a series of tremendous technological developments in mass spectrometry (MS), a core technology. Proteomics is exerting its influence on biological function of genes and genomes in the era (21st century) of functional genomics, and for this reason yeast, bacterial, and mammalian systems are the best examples. Although plant proteomics is still in its infancy, evolving proteomic technologies and the availability of the genome sequences of Arabidopsis thaliana (L.) Heyhn, and rice (Oryza sativa L.), model dicotyledoneous and monocotyledoneous (monocot) species, respectively, are propelling it towards new heights, as evidenced by the rapid spurt in worldwide plant proteome research. Rice, with an immense socio-economic impact on human civilization, is a representative model of cereal food crops, and we consider it as a cornerstone for functional genomics of cereal plants. In this review, we look at the history and the current state of monocot proteomes, including barley, maize, and wheat, with a central focus on rice, which has the most extensive proteomic coverage to date. On one side, we highlight advances in technologies that have generated enormous amount of interest in plant proteomics, and the other side summarizes the achievements made towards establishing proteomes during plant growth & development and challenge to environmental factors, including disease, and for studying genetic relationships. In light of what we have learned from the proteomic journey in rice and other monocots, we finally reveal and assess their impact in our continuous strive towards completion of their full proteomes.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal.
| | | |
Collapse
|
10
|
Walters D, Walsh D, Newton A, Lyon G. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. PHYTOPATHOLOGY 2005; 95:1368-73. [PMID: 18943546 DOI: 10.1094/phyto-95-1368] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT Plants can be induced to develop enhanced resistance to pathogen infection by treatment with a variety of abiotic and biotic inducers. Biotic inducers include infection by necrotizing pathogens and plant-growth-promoting rhizobacteria, and treatment with nonpathogens or cell wall fragments. Abiotic inducers include chemicals which act at various points in the signaling pathways involved in disease resistance, as well as water stress, heat shock, and pH stress. Resistance induced by these agents (resistance elicitors) is broad spectrum and long lasting, but rarely provides complete control of infection, with many resistance elicitors providing between 20 and 85% disease control. There also are many reports of resistance elicitors providing no significant disease control. In the field, expression of induced resistance is likely to be influenced by the environment, genotype, and crop nutrition. Unfortunately, little information is available on the influence of these factors on expression of induced resistance. In order to maximize the efficacy of resistance elicitors, a greater understanding of these interactions is required. It also will be important to determine how induced resistance can best fit into disease control strategies because they are not, and should not be, deployed simply as "safe fungicides". This, in turn, will require information on the interaction of resistance elicitors with crop management practices such as appropriate-dose fungicide use.
Collapse
|
11
|
Zhang B, Ramonell K, Somerville S, Stacey G. Characterization of early, chitin-induced gene expression in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:963-70. [PMID: 12236603 DOI: 10.1094/mpmi.2002.15.9.963] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three genes (i.e., a zinc finger protein, a lectin-like protein, and AtMPK3), previously shown to respond to chitin elicitation in microarray experiments, were used to examine the response of Arabidopsis spp. to chitin addition. Maximum induction for all three genes was found upon addition of crab-shell chitin at 100 mg per liter. Threefold induction was found with a chitin concentration as low as 10(-4) mg per liter. The specificity of this response was examined using purified chitin oligomers (degree of polymerization = 2 to 8). The larger chitin oligomers (hexamer to octamer), were most effective in inducing expression of the three genes assayed. Gene induction was observed after the addition of 1 nM chitin octamer. The protein kinase inhibitors staurosporine and K252a effectively suppressed chitin-induced gene expression, while the protein phosphatase inhibitors calyculin A and okadaic acid induced the accumulation of mRNA in the absence of chitin. The phosphorylation event necessary for transmission of the chitin signal was completed within the first 20 min of chitin addition. The level of chitin-induced gene expression of the lectin-like protein and AtMPK3 was not significantly changed in mutants blocked in the jasmonic acid (JA, jar1)-, ethylene (ein2)-, or salicylic acid (SA, pad4, npr1, and eds5)-dependent pathway. In contrast, expression of mRNA for the zinc finger protein was reduced in the mutants affected in the JA- or SA-dependent pathway.
Collapse
Affiliation(s)
- Bing Zhang
- Center for Legume Research, Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA
| | | | | | | |
Collapse
|
12
|
Choi JJ, Klosterman SJ, Hadwiger LA. A comparison of the effects of DNA-damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion, and cell death. PLANT PHYSIOLOGY 2001; 125:752-62. [PMID: 11161032 PMCID: PMC64876 DOI: 10.1104/pp.125.2.752] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Revised: 08/24/2000] [Accepted: 10/03/2000] [Indexed: 05/22/2023]
Abstract
Pea (Pisum sativum L. cv Alcan) endocarp tissue challenged with an incompatible fungal pathogen, Fusarium solani f. sp. phaseoli or fungal elicitors results in the induction of pathogenesis-related (PR) genes and the accumulation of pisatin, a phytoalexin. Essentially the same response occurs in pea tissue exposed to DNA-specific agents that crosslink or intercalate DNA. In this study, the effects of DNA-damaging agents were assessed relative to the inducible expression of several pea PR genes: phenylalanine ammonia lyase, chalcone synthase, and DRR206. Mitomycin C and actinomycin D mimicked the biotic elicitors in enhancing the expression of all three PR genes. The activities of these PR gene promoters, isolated from different plants, were evaluated heterologously in transgenic tobacco. It is remarkable that beta-glucuronidase expression was induced when plants containing the heterologous phenylalanine ammonia lyase, chalcone synthase, and DRR206 promoter-beta-glucuronidase chimeric reporter genes were treated by DNA-damaging agents. Finally, cytological analyses indicated that many of these agents caused nuclear distortion and collapse of the treated pea cells. Yet we observed that cell death is not necessary for the induction of the PR gene promoters assessed in this study. Based on these observations and previously published results, we propose that DNA damage or the associated alteration of chromatin can signal the transcriptional activation of plant defense genes.
Collapse
Affiliation(s)
- J J Choi
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, USA
| | | | | |
Collapse
|