1
|
Hladky SB, Barrand MA. Alterations in brain fluid physiology during the early stages of development of ischaemic oedema. Fluids Barriers CNS 2024; 21:51. [PMID: 38858667 PMCID: PMC11163777 DOI: 10.1186/s12987-024-00534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
Oedema occurs when higher than normal amounts of solutes and water accumulate in tissues. In brain parenchymal tissue, vasogenic oedema arises from changes in blood-brain barrier permeability, e.g. in peritumoral oedema. Cytotoxic oedema arises from excess accumulation of solutes within cells, e.g. ischaemic oedema following stroke. This type of oedema is initiated when blood flow in the affected core region falls sufficiently to deprive brain cells of the ATP needed to maintain ion gradients. As a consequence, there is: depolarization of neurons; neural uptake of Na+ and Cl- and loss of K+; neuronal swelling; astrocytic uptake of Na+, K+ and anions; swelling of astrocytes; and reduction in ISF volume by fluid uptake into neurons and astrocytes. There is increased parenchymal solute content due to metabolic osmolyte production and solute influx from CSF and blood. The greatly increased [K+]isf triggers spreading depolarizations into the surrounding penumbra increasing metabolic load leading to increased size of the ischaemic core. Water enters the parenchyma primarily from blood, some passing into astrocyte endfeet via AQP4. In the medium term, e.g. after three hours, NaCl permeability and swelling rate increase with partial opening of tight junctions between blood-brain barrier endothelial cells and opening of SUR1-TPRM4 channels. Swelling is then driven by a Donnan-like effect. Longer term, there is gross failure of the blood-brain barrier. Oedema resolution is slower than its formation. Fluids without colloid, e.g. infused mock CSF, can be reabsorbed across the blood-brain barrier by a Starling-like mechanism whereas infused serum with its colloids must be removed by even slower extravascular means. Large scale oedema can increase intracranial pressure (ICP) sufficiently to cause fatal brain herniation. The potentially lethal increase in ICP can be avoided by craniectomy or by aspiration of the osmotically active infarcted region. However, the only satisfactory treatment resulting in retention of function is restoration of blood flow, providing this can be achieved relatively quickly. One important objective of current research is to find treatments that increase the time during which reperfusion is successful. Questions still to be resolved are discussed.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK.
| | - Margery A Barrand
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK
| |
Collapse
|
2
|
Zadka Y, Doron O, Rosenthal G, Barnea O. Mechanisms of reduced cerebral blood flow in cerebral edema and elevated intracranial pressure. J Appl Physiol (1985) 2023; 134:444-454. [PMID: 36603049 DOI: 10.1152/japplphysiol.00287.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A mechanism of elevated intracranial pressure (ICP) in cerebral edema and its effects on cerebral blood flow (CBF) are presented in this paper. To study and demonstrate these effects, a mathematical model of intracranial hydrodynamics was developed. The model simulates the intracranial hydrodynamics and the changes that occur when cerebral edema predominates. To account for an edema pathology, the model includes resistances to cerebrospinal fluid (CSF) and interstitial fluid (ISF) flows within the parenchyma. The resistances change as the intercellular space becomes smaller due to swelling of brain cells. The model demonstrates the effect of changes in these resistances on ICP and venous resistance to blood flow by accounting for the key interactions between pressure, volume, and flow in the intracranial compartments in pathophysiological conditions. The model represents normal intracranial physiology as well as pathological conditions. Simulating cerebral edema with increased resistance to cerebral ISF flow resulted in elevated ICP, increased brain volume, markedly reduced ventricular volume, and decreased CBF as observed in the neurointensive care patients. The model indicates that in high ICP values, alternation of the arterial-arteriolar resistance to flow minimally affects CBF, whereas at low ICP they have a much greater effect on CBF. The model demonstrates and elucidates intracranial mechanisms related to elevated ICP.NEW & NOTEWORTHY Study goal was to elucidate the role of "bulk flow" of ISF through brain parenchyma. A model was developed to simulate fluid shifts in brain edema, ICP elevation, and their effect on CBF. Bulk flow resistance affected by edema elevates ICP and reduces CBF. Bulk flow affects transmural pressure and volume distribution in brain compartments. Changes in bulk flow resistance result in increase of venous resistance to flow and decrease in CBF.
Collapse
Affiliation(s)
- Yuliya Zadka
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Omer Doron
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Guy Rosenthal
- Department of Neurosurgery, Hadassah University Medical Center, Jerusalem, Israel
| | - Ofer Barnea
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
KOZLER P, HERYNEK V, MAREŠOVÁ D, PEREZ P, ŠEFC L, POKORNÝ J. Effect of Methylprednisolone on Experimental Brain Edema in Magnetic Resonance Imaging. Physiol Res 2020; 69:919-926. [DOI: 10.33549/physiolres.934460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging has been used for evaluating of a brain edema in experimental animals to assess cytotoxic and vasogenic edema by the apparent diffusion coefficient (ADC) and T2 imaging. This paper brings information about the effectiveness of methylprednisolone (MP) on experimental brain edema. A total of 24 rats were divided into three groups of 8 animals each. Rats with cytotoxic/intracellular brain edema induced by water intoxication were assigned to the group WI. These rats also served as the additional control group CG when measured before the induction of edema. A third group (WIMP) was intraperitoneally administered with methylprednisolone 100 mg/kg during water intoxication treatment. The group WI+MP was injected with methylprednisolone 50 mg/kg into the carotid artery within two hours after the water intoxication treatment. We evaluated the results in four groups. Two control groups (CG, WI) and two experimental groups (WIMP, WI+MP). Rats were subjected to MR scanning 24 h after edema induction. We observed significantly increased ADC values in group WI in both evaluated areas – cortex and hippocampus, which proved the occurrence of experimental vasogenic edema, while ADC values in groups WIMP and WI+MP were not increased, indicating that the experimental edema was not developed and thus confirming the protective effect of MP.
Collapse
Affiliation(s)
- P KOZLER
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - V HERYNEK
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D MAREŠOVÁ
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P PEREZ
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L ŠEFC
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J POKORNÝ
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Reulen HJ, Suero Molina E, Zeidler R, Gildehaus FJ, Böning G, Gosewisch A, Stummer W. Intracavitary radioimmunotherapy of high-grade gliomas: present status and future developments. Acta Neurochir (Wien) 2019; 161:1109-1124. [PMID: 30980242 DOI: 10.1007/s00701-019-03882-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
There is a distinct need for new and second-line therapies to delay or prevent local tumor regrowth after current standard of care therapy. Intracavitary radioimmunotherapy, in combination with radiotherapy, is discussed in the present review as a therapeutic strategy of high potential. We performed a systematic literature search following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). The available body of literature on intracavitary radioimmunotherapy (iRIT) in glioblastoma and anaplastic astrocytomas is presented. Several past and current phase I and II clinical trials, using mostly an anti-tenascin monoclonal antibody labeled with I-131, have shown median overall survival of 19-25 months in glioblastoma, while adverse events remain low. Tenascin, followed by EGFR and variants, or smaller peptides have been used as targets, and most clinical studies were performed with I-131 or Y-90 as radionuclides while only recently Re-188, I-125, and Bi-213 were applied. The pharmacokinetics of iRIT, as well as the challenges encountered with this therapy, is comprehensively discussed. This promising approach deserves further exploration in future studies by incorporating several innovative modifications.
Collapse
Affiliation(s)
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.
| | - Reinhard Zeidler
- Helmholtz-Zentrum Munich, German Research Center for Environmental Health, Research Group Gene Vectors, Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
5
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
6
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014; 11:26. [PMID: 25678956 PMCID: PMC4326185 DOI: 10.1186/2045-8118-11-26] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
7
|
Nance E, Zhang C, Shih TY, Xu Q, Schuster BS, Hanes J. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS NANO 2014; 8:10655-64. [PMID: 25259648 PMCID: PMC4212792 DOI: 10.1021/nn504210g] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/26/2014] [Indexed: 05/21/2023]
Abstract
Poor drug distribution and short drug half-life within tumors strongly limit efficacy of chemotherapies in most cancers, including primary brain tumors. Local or targeted drug delivery via controlled-release polymers is a promising strategy to treat infiltrative brain tumors, which cannot be completely removed surgically. However, drug penetration is limited with conventional local therapies since small-molecule drugs often enter the first cell they encounter and travel only short distances from the site of administration. Nanoparticles that avoid adhesive interactions with the tumor extracellular matrix may improve drug distribution and sustain drug release when applied to the tumor area. We have previously shown model polystyrene nanoparticles up to 114 nm in diameter were able to rapidly diffuse in normal brain tissue, but only if coated with an exceptionally dense layer of poly(ethylene glycol) (PEG) to reduce adhesive interactions. Here, we demonstrate that paclitaxel (PTX)-loaded, poly(lactic-co-glycolic acid) (PLGA)-co-PEG block copolymer nanoparticles with an average diameter of 70 nm were able to diffuse 100-fold faster than similarly sized PTX-loaded PLGA particles (without PEG coatings). Densely PEGylated PTX-loaded nanoparticles significantly delayed tumor growth following local administration to established brain tumors, as compared to PTX-loaded PLGA nanoparticles or unencapsulated PTX. Delayed tumor growth combined with enhanced distribution of drug-loaded PLGA-PEG nanoparticles to the tumor infiltrative front demonstrates that particle penetration within the brain tumor parenchyma improves therapeutic efficacy. The use of drug-loaded brain-penetrating nanoparticles is a promising approach to achieve sustained and more uniform drug delivery to treat aggressive gliomas and potentially other brain disorders.
Collapse
Affiliation(s)
- Elizabeth Nance
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Clark Zhang
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Ting-Yu Shih
- Department of Chemical & Biomolecular Engineering and Center for Cancer Nanotechnology Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qingguo Xu
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Benjamin S. Schuster
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Biomedical Engineering, Department of Ophthalmology, Deparments of Oncology, Pharmacology and Molecular Sciences, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical & Biomolecular Engineering and Center for Cancer Nanotechnology Excellence, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Address correspondence to
| |
Collapse
|
8
|
Nagaraja TN, Keenan KA, Aryal MP, Ewing JR, Gopinath S, Nadig VS, Shashikumar S, Knight RA. Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia. Fluids Barriers CNS 2014; 11:21. [PMID: 25276343 PMCID: PMC4177725 DOI: 10.1186/2045-8118-11-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/19/2014] [Indexed: 12/02/2022] Open
Abstract
Background Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols. Methods Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals. Results The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the SDI at its maximum was significantly larger than the pixels covered by bolus maximum (p = 0.05). Conclusions These results demonstrate that the SDI protocol resulted in a spread of the MRCA beyond the ischemic core. Whether plasma-borne acute stroke therapeutics can be delivered to the ischemic penumbra in a similar way needs to be investigated.
Collapse
Affiliation(s)
- Tavarekere N Nagaraja
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Kelly A Keenan
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Madhava P Aryal
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA ; Present address: Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA ; Department of Physics, Oakland University, Rochester, MI, USA ; Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Saarang Gopinath
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Varun S Nadig
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Sukruth Shashikumar
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | - Robert A Knight
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA ; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
9
|
Li Y, Qiao H, Yan W, Zhang J, Xing C, Wang H, Zhang B, Tang J. Molecular recognition force spectroscopy study of the dynamic interaction between aptamer GBI-10 and extracellular matrix protein tenascin-C on human glioblastoma cell. J Mol Recognit 2013; 26:46-50. [PMID: 23280617 DOI: 10.1002/jmr.2242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/04/2012] [Accepted: 09/16/2012] [Indexed: 11/09/2022]
Abstract
Molecular recognition force spectroscopy (MR-FS) was applied to investigate the dynamic interaction between aptamer GBI-10 and tenascin-C (TN-C) on human glioblastoma cell surface at single-molecule level. The unbinding force between aptamer GBI-10 and TN-C was 39 pN at the loading rate of 0.3 nN sec⁻¹. A series of kinetic parameters concerning interaction process such as the unbinding force f(u) , the association rate constant k(on) , dissociation rate constant at zero force k(off) , and dissociation constant K(D) for aptamer GBI-10/TN-C complexes were acquired. In addition, the interaction of aptamer GBI-10 with TN-C depended on the presence of Mg²⁺. This work demonstrates that MR-FS can be used as an attractive tool for exploring the interaction forces and dynamic process of aptamer and ligand at the single-molecule level. As a future perspective, MR-FS may be used as a potential diagnostic and therapeutic tool by combining with other techniques.
Collapse
Affiliation(s)
- Yongjun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Anatomic localization of O6-methylguanine DNA methyltransferase (MGMT) promoter methylated and unmethylated tumors: a radiographic study in 358 de novo human glioblastomas. Neuroimage 2011; 59:908-16. [PMID: 22001163 DOI: 10.1016/j.neuroimage.2011.09.076] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 11/23/2022] Open
Abstract
Promoter methylation of O6-methylguanine DNA methyltransferase (MGMT) is associated with a favorable prognosis in glioblastoma multiforme (GBM) and has been hypothesized to occur early in tumor transformation of glial cells. Thus, a possible link exists between the site of malignant transformation and MGMT promoter methylation status. Using the Analysis of Differential Involvement (ADIFFI) statistical mapping technique in a total of 358 patients with GBM, we demonstrate that human de novo GBMs occur in a high frequency contiguous with the posterior subventricular zone (SVZ); MGMT promoter methylated GBMs are lateralized to the left hemisphere, while MGMT unmethylated GBMs are lateralized to the right hemisphere; and tumors near the left temporal lobe have a significantly longer overall survival compared with tumors occurring elsewhere, independent of treatment or MGMT methylation status.
Collapse
|