• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4603033)   Today's Articles (2789)   Subscriber (49369)
For: Karasiev VV, Chakraborty D, Trickey SB. Progress on New Approaches to Old Ideas: Orbital-Free Density Functionals. In: Bach V, Delle Site L, editors. Many-Electron Approaches in Physics, Chemistry and Mathematics. Cham: Springer International Publishing; 2014. pp. 113-34. [DOI: 10.1007/978-3-319-06379-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Number Cited by Other Article(s)
1
Zhang H, Liu S, You J, Liu C, Zheng S, Lu Z, Wang T, Zheng N, Shao B. Overcoming the barrier of orbital-free density functional theory for molecular systems using deep learning. NATURE COMPUTATIONAL SCIENCE 2024;4:210-223. [PMID: 38467870 DOI: 10.1038/s43588-024-00605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
2
Mi W, Luo K, Trickey SB, Pavanello M. Orbital-Free Density Functional Theory: An Attractive Electronic Structure Method for Large-Scale First-Principles Simulations. Chem Rev 2023;123:12039-12104. [PMID: 37870767 DOI: 10.1021/acs.chemrev.2c00758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
3
Tan CW, Pickard CJ, Witt WC. Automatic differentiation for orbital-free density functional theory. J Chem Phys 2023;158:124801. [PMID: 37003740 DOI: 10.1063/5.0138429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]  Open
4
Hao H, Ruiz Pestana L, Qian J, Liu M, Xu Q, Head‐Gordon T. Chemical transformations and transport phenomena at interfaces. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
5
Kinetic Energy Density Functionals Based on a Generalized Screened Coulomb Potential: Linear Response and Future Perspectives. COMPUTATION 2022. [DOI: 10.3390/computation10020030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
6
Sillaste S, Thompson RB. Molecular Bonding in an Orbital-Free-Related Density Functional Theory. J Phys Chem A 2022;126:325-332. [PMID: 34994568 DOI: 10.1021/acs.jpca.1c07128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
7
Finzel K. Approximate Analytical Solutions for the Euler Equation for Second-Row Homonuclear Dimers. J Chem Theory Comput 2021;17:6832-6840. [PMID: 34407616 DOI: 10.1021/acs.jctc.1c00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
8
Witt WC, Jiang K, Carter EA. Upper bound to the gradient-based kinetic energy density of noninteracting electrons in an external potential. J Chem Phys 2019. [DOI: 10.1063/1.5108896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
9
Finzel K. The first order atomic fragment approach-An orbital-free implementation of density functional theory. J Chem Phys 2019;151:024109. [PMID: 31301700 DOI: 10.1063/1.5099217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
10
Thompson RB. An alternative derivation of orbital-free density functional theory. J Chem Phys 2019;150:204109. [PMID: 31153158 DOI: 10.1063/1.5096405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
11
Constantin LA, Fabiano E, Della Sala F. Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density Functional Theory. J Chem Theory Comput 2019;15:3044-3055. [DOI: 10.1021/acs.jctc.9b00183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Finzel K, Kohout M. A fragment-based approximation of the Pauli kinetic energy. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2395-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
del Rio BG, Chen M, González LE, Carter EA. Orbital-free density functional theory simulation of collective dynamics coupling in liquid Sn. J Chem Phys 2018;149:094504. [DOI: 10.1063/1.5040697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Constantin LA, Fabiano E, Della Sala F. Semilocal Pauli-Gaussian Kinetic Functionals for Orbital-Free Density Functional Theory Calculations of Solids. J Phys Chem Lett 2018;9:4385-4390. [PMID: 30019904 DOI: 10.1021/acs.jpclett.8b01926] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
15
Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients. J Chem Theory Comput 2017;13:4228-4239. [DOI: 10.1021/acs.jctc.7b00705] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Dieterich JM, Witt WC, Carter EA. libKEDF: An accelerated library of kinetic energy density functionals. J Comput Chem 2017;38:1552-1559. [DOI: 10.1002/jcc.24806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 01/09/2023]
17
Finzel K, Ayers PW. Functional constructions with specified functional derivatives. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-2013-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Mi W, Zhang S, Wang Y, Ma Y, Miao M. First-principle optimal local pseudopotentials construction via optimized effective potential method. J Chem Phys 2016;144:134108. [DOI: 10.1063/1.4944989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA