1
|
Gharleghi R, Adikari D, Ellenberger K, Webster M, Ellis C, Sowmya A, Ooi S, Beier S. Annotated computed tomography coronary angiogram images and associated data of normal and diseased arteries. Sci Data 2023; 10:128. [PMID: 36899014 PMCID: PMC10006074 DOI: 10.1038/s41597-023-02016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Computed Tomography Coronary Angiography (CTCA) is a non-invasive method to evaluate coronary artery anatomy and disease. CTCA is ideal for geometry reconstruction to create virtual models of coronary arteries. To our knowledge there is no public dataset that includes centrelines and segmentation of the full coronary tree. We provide anonymized CTCA images, voxel-wise annotations and associated data in the form of centrelines, calcification scores and meshes of the coronary lumen in 20 normal and 20 diseased cases. Images were obtained along with patient information with informed, written consent as part of the Coronary Atlas. Cases were classified as normal (zero calcium score with no signs of stenosis) or diseased (confirmed coronary artery disease). Manual voxel-wise segmentations by three experts were combined using majority voting to generate the final annotations. Provided data can be used for a variety of research purposes, such as 3D printing patient-specific models, development and validation of segmentation algorithms, education and training of medical personnel and in-silico analyses such as testing of medical devices.
Collapse
Affiliation(s)
- R Gharleghi
- Faculty of Engineering, University of New South Wales, Kensington, NSW, 2052, Australia.
| | - D Adikari
- Prince of Wales Clinical School of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Department of Cardiology, Prince of Wales Hospital, Sydney, Australia
| | - K Ellenberger
- Prince of Wales Clinical School of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Department of Cardiology, Prince of Wales Hospital, Sydney, Australia
| | - M Webster
- Auckland City Hospital, 2 Park Road, Auckland, 1023, New Zealand
| | - C Ellis
- Auckland City Hospital, 2 Park Road, Auckland, 1023, New Zealand
| | - A Sowmya
- Faculty of Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - S Ooi
- Prince of Wales Clinical School of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Department of Cardiology, Prince of Wales Hospital, Sydney, Australia
| | - S Beier
- Faculty of Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
2
|
Poon EKW, Thondapu V, Hayat U, Barlis P, Yap CY, Kuo PH, Wang Q, Ma J, Zhu SJ, Moore S, Ooi ASH. Elevated Blood Viscosity and Microrecirculation Resulting From Coronary Stent Malapposition. J Biomech Eng 2018; 140:2673009. [DOI: 10.1115/1.4039306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 01/09/2023]
Abstract
One particular complexity of coronary artery is the natural tapering of the vessel with proximal segments having larger caliber and distal tapering as the vessel get smaller. The natural tapering of a coronary artery often leads to proximal incomplete stent apposition (ISA). ISA alters coronary hemodynamics and creates pathological path to develop complications such as in-stent restenosis, and more worryingly, stent thrombosis (ST). By employing state-of-the-art computer-aided design software, generic stent hoops were virtually deployed in an idealized tapered coronary artery with decreasing malapposition distance. Pulsatile blood flow simulations were carried out using computational fluid dynamics (CFD) on these computer-aided design models. CFD results reveal unprecedented details in both spatial and temporal development of microrecirculation environments throughout the cardiac cycle (CC). Arterial tapering also introduces secondary microrecirculation. These primary and secondary microrecirculations provoke significant fluctuations in arterial wall shear stress (WSS). There has been a direct correlation with changes in WSS and the development of atherosclerosis. Further, the presence of these microrecirculations influence strongly on the local levels of blood viscosity in the vicinity of the malapposed stent struts. The observation of secondary microrecirculations and changes in blood rheology is believed to complement the wall (-based) shear stress, perhaps providing additional physical explanations for tissue accumulation near ISA detected from high resolution optical coherence tomography (OCT).
Collapse
Affiliation(s)
- Eric K. W. Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Vikas Thondapu
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, Department of Medicine, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Umair Hayat
- Faculty of Medicine, Dentistry and Health Sciences, Department of Medicine, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Peter Barlis
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Chooi Yin Yap
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Po-Hung Kuo
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Qisen Wang
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Jiawei Ma
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Shuang J. Zhu
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Stephen Moore
- IBM Research Australia, Carlton 3053, Victoria, Australia e-mail:
| | - Andrew S. H. Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| |
Collapse
|
3
|
Szilágyi SM, Popovici MM, Szilágyi L. Review. Automatic Segmentation Techniques of the Coronary Artery Using CT Images in Acute Coronary Syndromes. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2017. [DOI: 10.1515/jce-2017-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Coronary artery disease represents one of the leading reasons of death worldwide, and acute coronary syndromes are their most devastating consequences. It is extremely important to identify the patients at risk for developing an acute myocardial infarction, and this goal can be achieved using noninvasive imaging techniques. Coronary computed tomography angiography (CCTA) is currently one of the most reliable methods used for assessing the coronary arteries; however, its use in emergency settings is sometimes limited due to time constraints. This paper presents the main characteristics of plaque vulnerability, the role of CCTA in the assessment of vulnerable plaques, and automatic segmentation techniques of the coronary artery tree based on CT angiography images. A detailed inventory of existing methods is given, representing the state-of-the-art of computational methods applied in vascular system segmentation, focusing on the current applications in acute coronary syndromes.
Collapse
Affiliation(s)
| | - Monica Marton Popovici
- Swedish Medical Center, Department of Internal Medicine and Critical Care, 21601, 76th Ave W, Edmonds, Washington , 98026, USA
| | - László Szilágyi
- Department of Electrical Engineering, Sapientia University, Tîrgu Mureș , Romania
| |
Collapse
|
4
|
Medrano-Gracia P, Ormiston J, Webster M, Beier S, Ellis C, Wang C, Smedby Ö, Young A, Cowan B. A Study of Coronary Bifurcation Shape in a Normal Population. J Cardiovasc Transl Res 2016; 10:82-90. [PMID: 28028693 PMCID: PMC5323506 DOI: 10.1007/s12265-016-9720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/15/2016] [Indexed: 11/14/2022]
Abstract
During percutaneous coronary intervention, stents are placed in narrowings of the arteries to restore normal blood flow. Despite improvements in stent design, deployment techniques and drug-eluting coatings, restenosis and stent thrombosis remain a significant problem. Population stent design based on statistical shape analysis may improve clinical outcomes. Computed tomographic (CT) coronary angiography scans from 211 patients with a zero calcium score, no stenoses and no intermediate artery, were used to create statistical shape models of 446 major coronary artery bifurcations (left main, first diagonal and obtuse marginal and right coronary crux). Coherent point drift was used for registration. Principal component analysis shape scores were tested against clinical risk factors, quantifying the importance of recognised shape features in intervention including size, angles and curvature. Significant differences were found in (1) vessel size and bifurcation angle between the left main and other bifurcations; (2) inlet and curvature angle between the right coronary crux and other bifurcations; and (3) size and bifurcation angle by sex. Hypertension, smoking history and diabetes did not appear to have an association with shape. Physiological diameter laws were compared, with the Huo-Kassab model having the best fit. Bifurcation coronary anatomy can be partitioned into clinically meaningful modes of variation showing significant shape differences. A computational atlas of normal coronary bifurcation shape, where disease is common, may aid in the design of new stents and deployment techniques, by providing data for bench-top testing and computational modelling of blood flow and vessel wall mechanics.
Collapse
Affiliation(s)
- Pau Medrano-Gracia
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
| | | | | | - Susann Beier
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - Chunliang Wang
- School of Technology and Health, KTH Royal Institute of Technology, Brinellvägen 8, Stockholm, Sweden
| | - Örjan Smedby
- School of Technology and Health, KTH Royal Institute of Technology, Brinellvägen 8, Stockholm, Sweden
| | - Alistair Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Brett Cowan
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, Young A, Gilbert K, Cowan B. Overcoming spatio-temporal limitations using dynamically scaled in vitro PC-MRI - A flow field comparison to true-scale computer simulations of idealized, stented and patient-specific left main bifurcations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:1220-1223. [PMID: 28324943 DOI: 10.1109/embc.2016.7590925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The majority of patients with angina or heart failure have coronary artery disease. Left main bifurcations are particularly susceptible to pathological narrowing. Flow is a major factor of atheroma development, but limitations in imaging technology such as spatio-temporal resolution, signal-to-noise ratio (SNRv), and imaging artefacts prevent in vivo investigations. Computational fluid dynamics (CFD) modelling is a common numerical approach to study flow, but it requires a cautious and rigorous application for meaningful results. Left main bifurcation angles of 40°, 80° and 110° were found to represent the spread of an atlas based 100 computed tomography angiograms. Three left mains with these bifurcation angles were reconstructed with 1) idealized, 2) stented, and 3) patient-specific geometry. These were then approximately 7× scaled-up and 3D printing as large phantoms. Their flow was reproduced using a blood-analogous, dynamically scaled steady flow circuit, enabling in vitro phase-contrast magnetic resonance (PC-MRI) measurements. After threshold segmentation the image data was registered to true-scale CFD of the same coronary geometry using a coherent point drift algorithm, yielding a small covariance error (σ2 <;5.8×10-4). Natural-neighbour interpolation of the CFD data onto the PC-MRI grid enabled direct flow field comparison, showing very good agreement in magnitude (error 2-12%) and directional changes (r2 0.87-0.91), and stent induced flow alternations were measureable for the first time. PC-MRI over-estimated velocities close to the wall, possibly due to partial voluming. Bifurcation shape determined the development of slow flow regions, which created lower SNRv regions and increased discrepancies. These can likely be minimised in future by testing different similarity parameters to reduce acquisition error and improve correlation further. It was demonstrated that in vitro large phantom acquisition correlates to true-scale coronary flow simulations when dynamically scaled, and thus can overcome current PC-MRI's spatio-temporal limitations. This novel method enables experimental assessment of stent induced flow alternations, and in future may elevate CFD coronary flow simulations by providing sophisticated boundary conditions, and enable investigations of stenosis phantoms.
Collapse
|
6
|
Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, Young A, Cowan B. Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries. J Biomech 2016; 49:1570-1582. [PMID: 27062590 DOI: 10.1016/j.jbiomech.2016.03.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/01/2016] [Accepted: 03/23/2016] [Indexed: 01/14/2023]
Abstract
The hemodynamic influence of vessel shape such as bifurcation angle is not fully understood with clinical and quantitative observations being equivocal. The aim of this study is to use computational modeling to study the hemodynamic effect of shape characteristics, in particular bifurcation angle (BA), for non-stented and stented coronary arteries. Nine bifurcations with angles of 40°, 60° and 80°, representative of ±1 SD of 101 asymptomatic computed tomography angiogram cases (average age 54±8 years; 57 females), were generated for (1) a non-stented idealized, (2) stented idealized, and (3) non-stented patient-specific geometry. Only the bifurcation angle was changed while the geometries were constant to eliminate flow effects induced by other vessel shape characteristics. The commercially available Biomatrix stent was used as a template and virtually inserted into each branch, simulating the T-stenting technique. Three patient-specific geometries with additional shape variation and ±2 SD BA variation (33°, 42° and 117°) were also computed. Computational fluid dynamics (CFD) analysis was performed for all 12 geometries to simulate physiological conditions, enabling the quantification of the hemodynamic stress distributions, including a threshold analysis of adversely low and high wall shear stress (WSS), low time-averaged WSS (TAWSS), high spatial WSS gradient (WSSG) and high Oscillatory Shear Index (OSI) area. The bifurcation angle had a minor impact on the areas of adverse hemodynamics in the idealized non-stented geometries, which fully disappeared once stented and was not apparent for patient geometries. High WSS regions were located close to the carina around peak-flow, and WSSG increased significantly after stenting for the idealized bifurcations. Additional shape variations affected the hemodynamic profiles, suggesting that BA alone has little effect on a patient׳s hemodynamic profile. Incoming flow angle, diameter and tortuosity appear to have stronger effects. This suggests that other bifurcation shape characteristics and stent placement/strategy may be more important than bifurcation angle in atherosclerotic disease development, progression, and stent outcome.
Collapse
Affiliation(s)
- Susann Beier
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - John Ormiston
- Mercy Angiography, 98 Mountain Rd, Mt Eden, 1023, Auckland, New Zealand.
| | - Mark Webster
- Green Lane Cardiovascular Service, Auckland City Hospital, Park Rd, Auckland 1030, New Zealand.
| | - John Cater
- Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Stuart Norris
- Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Pau Medrano-Gracia
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Alistair Young
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Brett Cowan
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, Young A, Cowan B. Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations. Ann Biomed Eng 2015; 44:315-29. [PMID: 26178872 PMCID: PMC4764643 DOI: 10.1007/s10439-015-1387-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/08/2015] [Indexed: 01/25/2023]
Abstract
Stent induced hemodynamic changes in the coronary arteries are associated with higher risk of adverse clinical outcome. The purpose of this study was to evaluate the impact of stent design on wall shear stress (WSS), time average WSS, and WSS gradient (WSSG), in idealized stent geometries using computational fluid dynamics. Strut spacing, thickness, luminal protrusion, and malapposition were systematically investigated and a comparison made between two commercially available stents (Omega and Biomatrix). Narrower strut spacing led to larger areas of adverse low WSS and high WSSG but these effects were mitigated when strut size was reduced, particularly for WSSG. Local hemodynamics worsened with luminal protrusion of the stent and with stent malapposition, adverse high WSS and WSSG were identified around peak flow and throughout the cardiac cycle respectively. For the Biomatrix stent, the adverse effect of thicker struts was mitigated by greater strut spacing, radial cell offset and flow-aligned struts. In conclusion, adverse hemodynamic effects of specific design features (such as strut size and narrow spacing) can be mitigated when combined with other hemodynamically beneficial design features but increased luminal protrusion can worsen the stent’s hemodynamic profile significantly.
Collapse
Affiliation(s)
- Susann Beier
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - John Ormiston
- Mercy Angiography, 98 Mountain Rd, Mt Eden, Auckland, 1023, New Zealand.
| | - Mark Webster
- Green Lane Cardiovascular Service, Auckland City Hospital, Park Rd, Auckland, 1030, New Zealand.
| | - John Cater
- Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Stuart Norris
- Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Pau Medrano-Gracia
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Alistair Young
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Brett Cowan
- Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|