1
|
Vidiella B, Fontich E, Valverde S, Sardanyés J. Habitat loss causes long extinction transients in small trophic chains. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00509-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Zhao D, Liu G, Wang X, Daraz U, Sun Q. Abundance of human pathogen genes in the phyllosphere of four landscape plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109933. [PMID: 32063310 DOI: 10.1016/j.jenvman.2019.109933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The surface of leaf, also known as phyllosphere, harbors diverse microbial communities which include both beneficial microorganisms promoting plants growth and harmful microorganisms, such as plant pathogens and human pathogens. Several studies have investigated the interaction between plants and human pathogens, while few works have focused on the quantitative analysis of pathogenic bacteria. On the basis of real-time polymerase chain reaction (qPCR), this study aimed to evaluate the abundance of following genes: the nuc and pvl of Staphylococcus aureus, the lytA and psaA of Streptococcus pneumoniae, and the ttr and invA of Salmonella enterica in the phyllosphere of four landscape plants (Nandina domestica, Rhododendron pulchrum, Photinia serrulata, and Cinnamomum camphora) growing in two habitats. Our results indicated that the relative abundance of pathogenic genes in the phyllosphere ranged from 10-9 to 10-6. The specific genes of S. aureus, S. pneumoniae and S. enterica in landscape plants were pvl, lytA and ttr, respectively. The two pathogenic genes of S. pneumoniae and the 16S rRNA gene were mainly affected by habitats, host species, and habitats-species interaction. Moreover, for the abundance of lytA and 16S rRNA, results showed that plants present in roadside with traffic pollution were relatively higher than that of campus with less pollution. The N. domestica and C. camphora were recommended for planting along the roadsides due to lower abundance of pathogenic genes. However, we have observed no significant difference in the abundance of pathogenic genes among four plants in the campus. Thereby, this study provided a valuable reference for selecting landscape plants in view of human health.
Collapse
Affiliation(s)
- Dandan Zhao
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China
| | - Guijia Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China
| | - Xuefei Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China
| | - Umar Daraz
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, China.
| |
Collapse
|
3
|
Troussellier M, Escalas A, Bouvier T, Mouillot D. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity. Front Microbiol 2017; 8:947. [PMID: 28611749 PMCID: PMC5447324 DOI: 10.3389/fmicb.2017.00947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism–microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.
Collapse
Affiliation(s)
- Marc Troussellier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - Arthur Escalas
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States
| | - Thierry Bouvier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
| |
Collapse
|