1
|
Feng M, Yang K, Wang J, Li G, Zhang H. First Report of FARSA in the Regulation of Cell Cycle and Survival in Mantle Cell Lymphoma Cells via PI3K-AKT and FOXO1-RAG1 Axes. Int J Mol Sci 2023; 24:ijms24021608. [PMID: 36675119 PMCID: PMC9865697 DOI: 10.3390/ijms24021608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer-associated factors have been largely identified in the understanding of tumorigenesis and progression. However, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) have so far been neglected in cancer research due to their canonical activities in protein translation and synthesis. FARSA, the alpha subunit of the phenylalanyl-tRNA synthetase is elevated across many cancer types, but its function in mantle cell lymphoma (MCL) remains undetermined. Herein, we found the lowest levels of FARSA in patients with MCL compared with other subtypes of lymphomas, and the same lower levels of FARSA were observed in chemoresistant MCL cell lines. Unexpectedly, despite the essential catalytic roles of FARSA, knockdown of FARSA in MCL cells did not lead to cell death but resulted in accelerated cell proliferation and cell cycle, whereas overexpression of FARSA induced remarkable cell-cycle arrest and overwhelming apoptosis. Further RNA sequencing (RNA-seq) analysis and validation experiments confirmed a strong connection between FARSA and cell cycle in MCL cells. Importantly, FARSA leads to the alteration of cell cycle and survival via both PI3K-AKT and FOXO1-RAG1 axes, highlighting a FARSA-mediated regulatory network in MCL cells. Our findings, for the first time, reveal the noncanonical roles of FARSA in MCL cells, and provide novel insights into understanding the pathogenesis and progression of B-cell malignancies.
Collapse
Affiliation(s)
- Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jia Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guilan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
2
|
Jang JY, Hwang I, Pan H, Yao J, Alinari L, Imada E, Zanettini C, Kluk MJ, Wang Y, Lee Y, Lin HV, Huang X, Di Liberto M, Chen Z, Ballman KV, Cantley LC, Marchionni L, Inghirami G, Elemento O, Baiocchi RA, Chen-Kiang S, Belvedere S, Zheng H, Paik J. A FOXO1-dependent transcription network is a targetable vulnerability of mantle cell lymphomas. J Clin Invest 2022; 132:160767. [PMID: 36282572 PMCID: PMC9753996 DOI: 10.1172/jci160767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy. FOXO1 is both necessary and sufficient to drive MCL lineage commitment through supporting the lineage-specific transcription programs. We further show that FOXO1, but not its close paralog FOXO3, can reprogram myeloid leukemia cells and induce B-lineage gene expression. Finally, we demonstrate that cpd10, a small molecule identified from an enriched FOXO1 inhibitor library, induces a robust cytotoxic response in MCL cells in vitro and suppresses MCL progression in vivo. Our findings establish FOXO1 inhibition as a therapeutic strategy targeting lineage-driven transcriptional addiction in MCL.
Collapse
Affiliation(s)
| | - Inah Hwang
- Department of Pathology and Laboratory Medicine and
| | - Heng Pan
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Eddie Imada
- Department of Pathology and Laboratory Medicine and
| | | | - Michael J. Kluk
- Department of Pathology and Laboratory Medicine and,Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| | - Yizhe Wang
- Department of Pathology and Laboratory Medicine and
| | - Yunkyoung Lee
- Forkhead BioTherapeutics Inc., New York, New York, USA
| | - Hua V. Lin
- Forkhead BioTherapeutics Inc., New York, New York, USA
| | | | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine and,Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| | - Zhengming Chen
- Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA.,Division of Biostatistics, Department of Population Health Sciences, and
| | - Karla V. Ballman
- Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA.,Division of Biostatistics, Department of Population Health Sciences, and
| | - Lewis C. Cantley
- Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine and,Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine and,Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA.,Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine and,Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| | | | - Hongwu Zheng
- Department of Pathology and Laboratory Medicine and
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine and,Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
3
|
Feng M, Wang J, Sun M, Li G, Li B, Zhang H. 3-Methyladenine but not antioxidants to overcome BACH2-mediated bortezomib resistance in mantle cell lymphoma. Cancer Cell Int 2021; 21:279. [PMID: 34039348 PMCID: PMC8157467 DOI: 10.1186/s12935-021-01980-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background Bortezomib (BTZ) is an inhibitor of the proteasome that has been used to treat patients with mantle cell lymphoma (MCL), but the resistance to BTZ in clinical cases remains a major drawback. BACH2 is a lymphoid-specific transcription repressor recognized as a tumor suppressor in MCL. Reduced BACH2 levels contribute to BTZ resistance; however, the molecular events underlying BACH2-mediated BTZ resistance are largely unclear. Methods We silenced BACH2 in MCL cells using a lentiviral shRNA-mediated knockdown system. Bioinformatic, real-time RT-PCR, immunoblotting and a series of functional assays were performed to describe the molecular mechanisms underlying BTZ resistance in MCL. The therapeutic effects of chemicals were evaluated on numerous cellular and molecular processes in resistant MCL cell lines and xenografts. Results In resistant cells, BTZ-triggered mild oxidative stress induced a strong activation of PI3K-AKT signaling, which further blocked nuclear translocation of BACH2. Defective nuclear translocation of BACH2 or silencing BACH2 removed its transcriptional repression on HMOX1, leading to upregulation of heme oxygenase-1 (HO-1). Increased HO-1 further maintained reactive oxygen species (ROS) within a minimal tumor-promoting level and enhanced cytoprotective autophagy. Interestingly, although mild increase in ROS exhibited a pro-tumorigenic effect on resistant cells, simply blocking ROS by antioxidants did not lead to cell death but aggravated BTZ resistance via stabilizing BACH1, the other member of BACH family. Instead, 3-methyladenine (3-MA), a dual inhibitor to suppress PI3K signaling and autophagosome formation, sensitized resistant MCL cells to BTZ, both in vitro and in vivo. Conclusion Our results dissected the interconnected molecular network in resistant MCL cells in which 3-MA represents an effective therapeutic strategy to overcome BTZ resistance. Notably, BACH1 and BACH2, albeit from the same family, are likely to play opposite roles in pathogenesis and progression of MCL.
Collapse
Affiliation(s)
- Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Jia Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.,School of Life Sciences, Yunnan University, Kunming, 650500, Yunnan, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Guilan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - BingXiang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
| |
Collapse
|
4
|
Jurczak W, Gruszka AM, Sowa Staszczak A, Dlugosz-Danecka M, Szostek M, Zimowska-Curylo D, Giza A, Krawczyk K, Jakobczyk M, Hubalewska-Dydejczyk A, Szymczyk M, Wróbel T, Knopińska-Posłuszny W, Kisiel E, Skotnicki A, Zinzani PL. Consolidation with 90Y ibritumomab tiuxetan radioimmunotherapy in mantle cell lymphoma patients ineligible for high dose therapy: results of the phase II multicentre Polish Lymphoma Research Group trial, after 8-year long follow-up. Leuk Lymphoma 2019; 60:2689-2696. [PMID: 30961415 DOI: 10.1080/10428194.2019.1602261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polish Lymphoma Research Group performed a phase-II trial to test whether 90Y ibritumomab tiuxetan radioimmunotherapy (Y90) may constitute an alternative consolidation for mantle cell lymphoma patients unfit for high-dose therapy. Forty-six patients were consolidated with Y90 following response to the 1st (n = 34) or 2nd line (n = 12) (immuno)chemotherapy. Majority of the patients had advanced disease (stage IV and presence of B-symptoms in 85% and 70%, respectively) and high MIPI (5.8, range 4-7). Consolidation with Y90 increased the complete remission (CR) rate obtained by the 1st line therapy from 41% to 91% and allowed for median PFS of 3.3 and OS of 6.5 years. In the first relapse, CR rate increased from 16% to 75%, while median PFS and OS totaled 2.2 and 6.5 years, respectively. At 8 years, 30% of patients, consolidated in the 1st line CR were alive, without relapse. Toxicity associated with Y90 is manageable, more severe after fludarabine-based regimens.
Collapse
Affiliation(s)
- Wojciech Jurczak
- Department of Haematology, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Anna Sowa Staszczak
- Department of Endocrinology, Nuclear Medicine Unit, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Monika Dlugosz-Danecka
- Department of Haematology, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Marta Szostek
- Department of Haematology, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Dagmara Zimowska-Curylo
- Department of Haematology, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Agnieszka Giza
- Department of Haematology, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Katarzyna Krawczyk
- Department of Haematology, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Malgorzata Jakobczyk
- Department of Haematology, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Alicja Hubalewska-Dydejczyk
- Department of Endocrinology, Nuclear Medicine Unit, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Michal Szymczyk
- Department of Lymphoid Malignancies, Centrum Onkologii-Instytut im Marii Sklodowskiej-Curie w Warszawie, Warszawa, Poland
| | - Tomasz Wróbel
- Department of Haematology, Uniwersytet Medyczny im Piastow Slaskich we Wroclawiu, Wroclaw, Poland
| | - Wanda Knopińska-Posłuszny
- Department of Hematology, Independent Public Health Care of the Ministry of the Internal Affairs with the Oncology Centre, Olsztyn, Poland
| | | | - Aleksander Skotnicki
- Department of Haematology, Uniwersytet Jagiellonski w Krakowie Collegium Medicum, Krakow, Poland
| | - Pier Luigi Zinzani
- Policlinico "Sant'Orsola-Malpighi" - University of Bologna Institute of Hematology "Seràgnoli", Bologna, Italy
| |
Collapse
|
5
|
Ibrutinib Treatment through Nasogastric Tube in a Comatose Patient with Central Nervous System Localization of Mantle Cell Lymphoma. Case Rep Hematol 2018; 2018:5761627. [PMID: 30186643 PMCID: PMC6116396 DOI: 10.1155/2018/5761627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
Nowadays, mantle cell lymphoma is considered to have one of the worst prognostic profiles among lymphoid malignancies. Mantle cell lymphoma rarely affects the central nervous system (CNS) as it represents about 0.9% of diagnosis and 4% among recurrent cases. Here, we present the case of a 69-year-old male patient who was diagnosed with mantle cell lymphoma in 2006. The patient relapsed three times, without affecting the CNS, then was treated accordingly, and achieved complete remission three times. Four years after his last complete remission, upon receiving his last dose of treatment, the medical team noted a rapid worsening of the patient's neurological status followed by a deep coma state causing MCL neurological recurrence by exclusion diagnosis. The patient then received ibrutinib via a nasogastric tube at a dose of 560 mg daily. Two days after receiving his last dose of ibrutinib, the patient regained full consciousness, and 10 days later, he was discharged from the hospital. The patient achieved complete remission and showed no signs of neurological damages for 24 months following his ibrutinib treatment. We believe that the administration of ibrutinib through the nasogastric tube was a determinant factor in this patient's remission and survival.
Collapse
|
6
|
Zhang Y, Zhang R, Ding X, Peng B, Wang N, Ma F, Peng Y, Wang Q, Chang J. FNC efficiently inhibits mantle cell lymphoma growth. PLoS One 2017; 12:e0174112. [PMID: 28333959 PMCID: PMC5363836 DOI: 10.1371/journal.pone.0174112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, China
| | - Rong Zhang
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xixi Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bangan Peng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ning Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, China
| | - Fang Ma
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, China
| | - Youmei Peng
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, China
| | - Qingduan Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, China
- * E-mail: (JC); (QW)
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
- * E-mail: (JC); (QW)
| |
Collapse
|
7
|
Zhang H, Chen Z, Miranda RN, Medeiros LJ, McCarty N. TG2 and NF-κB Signaling Coordinates the Survival of Mantle Cell Lymphoma Cells via IL6-Mediated Autophagy. Cancer Res 2016; 76:6410-6423. [PMID: 27488529 DOI: 10.1158/0008-5472.can-16-0595] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023]
Abstract
Expression of the transglutaminase TG2 has been linked to constitutive activation of NF-κB and chemotherapy resistance in mantle cell lymphoma (MCL) cells. TG2 forms complexes with NF-κB components, but mechanistic insights that could be used to leverage therapeutic responses has been lacking. In the current study, we address this issue with the discovery of an unexpected role for TG2 in triggering autophagy in drug-resistant MCL cells through induction of IL6. CRISPR-mediated silencing of TG2 delayed apoptosis while overexpressing TG2 enhanced tumor progression. Under stress, TG2 and IL6 mediate enhanced autophagy formation to promote MCL cell survival. Interestingly, the autophagy product ATG5 involved in autophagosome elongation positively regulated TG2/NF-κB/IL6 signaling, suggesting a positive feedback loop. Our results uncover an interconnected network of TG2/NF-κB and IL6/STAT3 signaling with autophagy regulation in MCL cells, the disruption of which may offer a promising therapeutic strategy. Cancer Res; 76(21); 6410-23. ©2016 AACR.
Collapse
Affiliation(s)
- Han Zhang
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas
| | - Zheng Chen
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nami McCarty
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
8
|
The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy. J Transl Med 2016; 96:862-71. [PMID: 27295345 DOI: 10.1038/labinvest.2016.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 01/02/2023] Open
Abstract
Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.
Collapse
|