1
|
Guan Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci Ther 2024; 30:e70069. [PMID: 39370620 PMCID: PMC11456617 DOI: 10.1111/cns.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Cognitive impairment is a typical symptom of both neurodegenerative and certain other diseases. In connection with these different pathologies, the etiology and neurological and metabolic changes associated with cognitive impairment must differ. Until these characteristics and differences are understood in greater detail, pharmacological treatment of the different forms of cognitive impairment remains suboptimal. Neurotransmitter receptors, including neuronal nicotinic acetylcholine receptors (nAChRs), dopamine receptors, and glutamine receptors, play key roles in the functions and metabolisms of the brain. Among these, the role of nAChRs in the development of cognitive impairment has attracted more and more attention. The present review summarizes what is presently known concerning the structure, distribution, metabolism, and function of nAChRs, as well as their involvement in major cognitive disorders such as Alzheimer's disease, Parkinson's disease, vascular dementia, schizophrenia, and diabetes mellitus. As will be discussed, the relevant scientific literature reveals clearly that the α4β2 and α7 nAChR subtypes and/or subunits of the receptors play major roles in maintaining cognitive function and in neuroprotection of the brain. Accordingly, focusing on these as targets of drug therapy can be expected to lead to breakthroughs in the treatment of cognitive disorders such as AD and schizophrenia.
Collapse
Affiliation(s)
- Zhi‐Zhong Guan
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- Key Laboratory of Endemic and Ethnic DiseasesGuizhou Medical University, Ministry of Education and Provincial Key Laboratory of Medical Molecular BiologyGuiyangP.R. China
| |
Collapse
|
2
|
Tosti B, Corrado S, Mancone S, Di Libero T, Rodio A, Andrade A, Diotaiuti P. Integrated use of biofeedback and neurofeedback techniques in treating pathological conditions and improving performance: a narrative review. Front Neurosci 2024; 18:1358481. [PMID: 38567285 PMCID: PMC10985214 DOI: 10.3389/fnins.2024.1358481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, the scientific community has begun tо explore the efficacy оf an integrated neurofeedback + biofeedback approach іn various conditions, both pathological and non-pathological. Although several studies have contributed valuable insights into its potential benefits, this review aims tо further investigate its effectiveness by synthesizing current findings and identifying areas for future research. Our goal іs tо provide a comprehensive overview that may highlight gaps іn the existing literature and propose directions for subsequent studies. The search for articles was conducted on the digital databases PubMed, Scopus, and Web of Science. Studies to have used the integrated neurofeedback + biofeedback approach published between 2014 and 2023 and reviews to have analyzed the efficacy of neurofeedback and biofeedback, separately, related to the same time interval and topics were selected. The search identified five studies compatible with the objectives of the review, related to several conditions: nicotine addiction, sports performance, Autism Spectrum Disorder (ASD), and Attention Deficit Hyperactivity Disorder (ADHD). The integrated neurofeedback + biofeedback approach has been shown to be effective in improving several aspects of these conditions, such as a reduction in the presence of psychiatric symptoms, anxiety, depression, and withdrawal symptoms and an increase in self-esteem in smokers; improvements in communication, imitation, social/cognitive awareness, and social behavior in ASD subjects; improvements in attention, alertness, and reaction time in sports champions; and improvements in attention and inhibitory control in ADHD subjects. Further research, characterized by greater methodological rigor, is therefore needed to determine the effectiveness of this method and the superiority, if any, of this type of training over the single administration of either. This review іs intended tо serve as a catalyst for future research, signaling promising directions for the advancement оf biofeedback and neurofeedback methodologies.
Collapse
Affiliation(s)
- Beatrice Tosti
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Stefano Corrado
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Stefania Mancone
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Tommaso Di Libero
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Alexandro Andrade
- Department of Physical Education, CEFID, Santa Catarina State University, Florianopolis, Santa Catarina, Brazil
| | - Pierluigi Diotaiuti
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| |
Collapse
|
3
|
Yang Z, Chen J, Han H, Wang Y, Shi X, Zhang B, Mao Y, Li AN, Yuan W, Yao J, Li MD. Single nucleotide polymorphisms rs148582811 regulates its host gene ARVCF expression to affect nicotine-associated hippocampus-dependent memory. iScience 2023; 26:108335. [PMID: 38025780 PMCID: PMC10679859 DOI: 10.1016/j.isci.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Although numerous susceptibility loci are nominated for nicotine dependence (ND), no report showed any association of ARVCF with ND. Through genome-wide sequencing analysis, we first identified genetic variants associated nominally with ND and then replicated them in an independent sample. Of the six replicated variants, rs148582811 in ARVCF located in the enhancer-associated marker peak is attractive. The effective-median-based Mendelian randomization analysis indicated that ARVCF is a causal gene for ND. RNA-seq analysis detected decreased ARVCF expression in smokers compared to nonsmokers. Luciferase reporter assays indicated that rs148582811 and its located DNA fragment allele-specifically regulated ARVCF expression. Immunoprecipitation analysis revealed that transcription factor X-ray repair cross-complementing protein 5 (XRCC5) bound to the DNA fragment containing rs148582811 and allele-specifically regulated ARVCF expression at the mRNA and protein levels. With the Arvcf knockout mouse model, we showed that Arvcf deletion not only impairs hippocampus-dependent learning and memory, but also alleviated nicotine-induced memory deficits.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Andria N. Li
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianhua Yao
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Saito H, Furukawa Y, Sasaki T, Kitajima S, Kanno J, Tanemura K. Behavioral effects of adult male mice induced by low-level acetamiprid, imidacloprid, and nicotine exposure in early-life. Front Neurosci 2023; 17:1239808. [PMID: 37662107 PMCID: PMC10469492 DOI: 10.3389/fnins.2023.1239808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Acetamiprid (ACE) and imidacloprid (IMI), the neonicotinoid chemicals, are widely used as pesticides because of their rapid insecticidal activity. Although these neonicotinoids exert very low toxicity in mammals, the effects of early, low-level, chronic exposure on the adult central nervous system are largely unclear. This study investigated the effects of low-level, chronic neonicotinoids exposure in early life on the brain functions of adult mice, using environmentally relevant concentrations. Methods We exposed mice to an acceptable daily intake level of neonicotinoids in drinking water during the prenatal and postnatal periods. Additionally, we also exposed mice to nicotine (NIC) as a positive control. We then examined the effects on the central nervous system in adult male offspring. Results In the IMI and NIC exposure groups, we detected behavior that displayed impairment in learning and memory. Furthermore, immunohistochemical analysis revealed a decrease in SOX2 (as a neural stem cell marker) and GFAP (as an astrocyte marker) positive cells of the hippocampal dentate gyrus in the IMI and NIC exposure groups compared to the control group. Discussion These results suggest that exposure to neonicotinoids at low levels in early life affects neural circuit base formation and post-maturation behavior. Therefore, in the central nervous system of male mice, the effects of low-level, chronic neonicotinoids exposure during the perinatal period were different from the expected effects of neonicotinoids exposure in mature animals.
Collapse
Affiliation(s)
- Hirokatsu Saito
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Yusuke Furukawa
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Takahiro Sasaki
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Satoshi Kitajima
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Liu Y, Meng Y, Zhou C, Yan J, Guo C, Dong W. Activation of the IL-17/TRAF6/NF-κB pathway is implicated in Aβ-induced neurotoxicity. BMC Neurosci 2023; 24:14. [PMID: 36823558 PMCID: PMC9951515 DOI: 10.1186/s12868-023-00782-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Neuroinflammation plays a critical role in Amyloid-β (Aβ) pathophysiology. The cytokine, interleukin-17A (IL-17) is involved in the learning and memory process in the central nervous system and its level was reported to be increased in Alzheimer's disease (AD) brain, while the effect of IL-17 on the course of Aβ has not been well defined. METHODS Here, we used APP/PS1 mice to detect the IL-17 expression level. Primary hippocampal neurons were treated with IL-17, and immunofluorescence was used to investigate whether IL-17 induced neuron damage. At the same time, male C57BL/6 mice were injected with Aβ42 to mimic the Aβ model. Then IL-17 neutralizing antibody (IL-17Ab) was used to inject into the lateral ventricle, and the Open field test, Novel Objective Recognition test, Fear condition test were used to detect cognitive function. LTP was used to assess synaptic plasticity, molecular biology technology was used to assess the IL-17/TRAF6/NF-κB pathway, and ELISA was used to detect inflammatory factors. RESULTS Altogether, we here found that IL-17 was increased in APP/PS1 mice, and it induced neural damage by the administration to primary hippocampal neurons. Interestingly, Using Aβ42 mice, the results showed that the level of IL-17 was increased in Aβ42 model mice, and IL-17Ab could ameliorate Aβ-induced neurotoxicity and cognitive decline in C57BL/6 mice by downregulation the TRAF6/NF-κB pathway. CONCLUSION These findings highlight the pathogenic role of IL-17 in Aβ induced-synaptic dysfunction and cognitive deficits. Inhibition of IL-17 could ameliorate Aβ-induced neurotoxicity and cognitive decline in C57BL/6 mice by downregulation of the TRAF6/NF-κB pathway, which provides new clues for the mechanism of Aβ-induced cognitive impairments, and a basis for therapeutic intervention.
Collapse
Affiliation(s)
- Yulan Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Meng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenliang Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juanjuan Yan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuiping Guo
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Pandria N, Athanasiou A, Styliadis C, Terzopoulos N, Mitsopoulos K, Paraskevopoulos E, Karagianni M, Pataka A, Kourtidou-Papadeli C, Makedou K, Iliadis S, Lymperaki E, Nimatoudis I, Argyropoulou-Pataka P, Bamidis PD. Does combined training of biofeedback and neurofeedback affect smoking status, behavior, and longitudinal brain plasticity? Front Behav Neurosci 2023; 17:1096122. [PMID: 36778131 PMCID: PMC9911884 DOI: 10.3389/fnbeh.2023.1096122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction: Investigations of biofeedback (BF) and neurofeedback (NF) training for nicotine addiction have been long documented to lead to positive gains in smoking status, behavior and to changes in brain activity. We aimed to: (a) evaluate a multi-visit combined BF/NF intervention as an alternative smoking cessation approach, (b) validate training-induced feedback learning, and (c) document effects on resting-state functional connectivity networks (rsFCN); considering gender and degree of nicotine dependence in a longitudinal design. Methods: We analyzed clinical, behavioral, and electrophysiological data from 17 smokers who completed five BF and 20 NF sessions and three evaluation stages. Possible neuroplastic effects were explored comparing whole-brain rsFCN by phase-lag index (PLI) for different brain rhythms. PLI connections with significant change across time were investigated according to different resting-state networks (RSNs). Results: Improvements in smoking status were observed as exhaled carbon monoxide levels, Total Oxidative Stress, and Fageström scores decreased while Vitamin E levels increased across time. BF/NF promoted gains in anxiety, self-esteem, and several aspects of cognitive performance. BF learning in temperature enhancement was observed within sessions. NF learning in theta/alpha ratio increase was achieved across baselines and within sessions. PLI network connections significantly changed across time mainly between or within visual, default mode and frontoparietal networks in theta and alpha rhythms, while beta band RSNs mostly changed significantly after BF sessions. Discussion: Combined BF/NF training positively affects the clinical and behavioral status of smokers, displays benefit in smoking harm reduction, plays a neuroprotective role, leads to learning effects and to positive reorganization of RSNs across time. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02991781.
Collapse
Affiliation(s)
- Niki Pandria
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Alkinoos Athanasiou
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Charis Styliadis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Nikos Terzopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Konstantinos Mitsopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Maria Karagianni
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Athanasia Pataka
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evgenia Lymperaki
- Department of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | - Ioannis Nimatoudis
- Third Department of Psychiatry, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Panagiotis D. Bamidis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece,*Correspondence: Panagiotis D. Bamidis
| |
Collapse
|
7
|
Zhong C, Akmentin W, Role LW, Talmage DA. Axonal α7* nicotinic acetylcholine receptors modulate glutamatergic signaling and synaptic vesicle organization in ventral hippocampal projections. Front Neural Circuits 2022; 16:978837. [PMID: 36213206 PMCID: PMC9537472 DOI: 10.3389/fncir.2022.978837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Modulation of the release of glutamate by activation of presynaptic nicotinic acetylcholine receptors (nAChRs) is one of the most prevalent mechanism of nicotinic facilitation of glutamatergic transmission in cortico-limbic circuits. By imaging gene chimeric co-cultures from mouse, we examined the role of α7* nAChRs mediated cholinergic modulation of glutamate release and synaptic vesicle organization in ventral hippocampal projections. We directly visualized exogenous and endogenous cholinergic facilitation of glutamate release in this specialized preparation of circuits in vitro. Disrupting α7* nAChRs mediated cholinergic signaling genetically or pharmacologically diminished cholinergic facilitation of glutamate release at presynaptic terminals. Alteration of α7* nAChRs mediated cholinergic signaling along glutamatergic axons also decreased functional synaptic vesicle clustering to presynaptic terminals. These findings suggest that presynaptic α7* nAChRs contribute to cholinergic modulation of glutamate release and synaptic vesicle organization.
Collapse
Affiliation(s)
- Chongbo Zhong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wendy Akmentin
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, United States
| | - Lorna W. Role
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David A. Talmage
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
8
|
Spasova V, Mehmood S, Minhas A, Azhar R, Anand S, Abdelaal S, Sham S, Chauhan TM, Dragas D. Impact of Nicotine on Cognition in Patients With Schizophrenia: A Narrative Review. Cureus 2022; 14:e24306. [PMID: 35475247 PMCID: PMC9020415 DOI: 10.7759/cureus.24306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Nicotine is the psychoactive component given tobacco has several main components and acts as an agonist for nicotinic acetylcholine receptors (nAChRs) in the nervous system. Although the ligand-gated cation channels known as nAChRs are found throughout the nervous system and body, this review focuses on neuronal nAChRs. Individuals with psychiatric diseases such as schizophrenia, comorbid substance use disorders, attention-deficit hyperactivity disorder, major depression, and bipolar disorder have increased rates of smoking. These psychiatric disorders are associated with various cognitive deficits, including working memory, deficits in attention, and response inhibition functions. The cognitive-enhancing effects of nicotine may be particularly relevant predictors of smoking initiation and continuation in this comorbid population. Individuals with schizophrenia make up a significant proportion of smokers. Literature suggests that patients smoke to alleviate cognitive deficiencies due to the stimulating effects of nicotine. This narrative review examines the role of nicotine on cognition in schizophrenia.
Collapse
|
9
|
Li ZL, Gou CY, Wang WH, Li Y, Cui Y, Duan JJ, Chen Y. A novel effect of PDLIM5 in α7 nicotinic acetylcholine receptor upregulation and surface expression. Cell Mol Life Sci 2022; 79:64. [PMID: 35013841 PMCID: PMC11072317 DOI: 10.1007/s00018-021-04115-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widespread throughout the central nervous system. Signaling through nAChRs contributes to numerous higher-order functions, including memory and cognition, as well as abnormalities such as nicotine addiction and neurodegenerative disorders. Although recent studies indicate that the PDZ-containing proteins comprising PSD-95 family co-localize with nicotinic acetylcholine receptors and mediate downstream signaling in the neurons, the mechanisms by which α7nAChRs are regulated remain unclear. Here, we show that the PDZ-LIM domain family protein PDLIM5 binds to α7nAChRs and plays a role in nicotine-induced α7nAChRs upregulation and surface expression. We find that chronic exposure to 1 μM nicotine upregulated α7, β2-contained nAChRs and PDLIM5 in cultured hippocampal neurons, and the upregulation of α7nAChRs and PDLIM5 is increased more on the cell membrane than the cytoplasm. Interestingly, in primary hippocampal neurons, α7nAChRs and β2nAChRs display distinct patterns of expression, with α7nAChRs colocalized more with PDLIM5. Furthermore, PDLIM5 interacts with α7nAChRs, but not β2nAChRs in native brain neurons. Knocking down of PDLIM5 in SH-SY5Y abolishes nicotine-induced upregulation of α7nAChRs. In primary hippocampal neurons, using shRNA against PDLIM5 decreased both surface clustering of α7nAChRs and α7nAChRs-mediated currents. Proteomics analysis and isothermal titration calorimetry (ITC) results show that PDLIM5 interacts with α7nAChRs through the PDZ domain, and the interaction between PDLIM5 and α7nAChRs can be promoted by nicotine. Collectively, our data suggest a novel cellular role of PDLIM5 in the regulation of α7nAChRs, which may be relevant to plastic changes in the nervous system.
Collapse
Affiliation(s)
- Zi-Lin Li
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Chen-Yu Gou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China
| | - Wen-Hui Wang
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yuan Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China
| | - Yu Cui
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Jing-Jing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzho, 510080, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yuan Chen
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Lee CY, Wang WH, Lee CH, Ho MC. Betel Quid Dependence Effects on Working Memory and Remote Memory in Chewers with Concurrent Use of Cigarette and Alcohol. Subst Use Misuse 2022; 57:105-113. [PMID: 34678114 DOI: 10.1080/10826084.2021.1990338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The current study asked whether BQ dependence level could affect working memory (WM) and remote memory for the chewers with concurrent use of cigarettes and alcohol, a common phenomenon in Taiwan. METHODS The standardized neuropsychological tests (Wechsler Memory Scale III (WMS-III) and Remote Memory Test) were adopted to address the BQ chewers' verbal WM, spatial WM and remote memory. The Spatial Span Test and the Digit Span Test from WMS-III and the Remote Memory Test were adopted. The Betel Nut Dependency Scale (BNDS), the Fagerstrom Test for Nicotine Dependence (FTND), and the Alcohol Use Disorders Identification Test (AUDIT) were adopted to measure the dependence levels. RESULTS The BQ dependence level and Last BQ did not affect spatial WM, verbal WM, and remote memory. Last Cigarette is critical in affecting WM; namely, longer interval led to worse performance. Finally, higher alcohol dependence level could lead to better remote memory. CONCLUSIONS To our knowledge, there are no BQ studies addressing the effects of concurrent use of cigarettes and alcohol on memory. The current results suggest that cigarette smoking and alcohol drinking, rather than BQ chewing, are critical for memory performance.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Clinical Psychology Department, Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan
| | - Wei-Han Wang
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Chou Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Psychological Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Jao NC, Tan MM, Matthews PA, Simon MA, Schnoll R, Hitsman B. Menthol Cigarettes, Tobacco Dependence, and Smoking Persistence: The Need to Examine Enhanced Cognitive Functioning as a Neuropsychological Mechanism. Nicotine Tob Res 2020; 22:466-472. [PMID: 30551213 DOI: 10.1093/ntr/nty264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite the overall decline in the prevalence of cigarette use in the United States, menthol cigarette use among smokers is rising, and evidence shows that it may lead to more detrimental effects on public health than regular cigarette use. One of the mechanisms by which nicotine sustains tobacco use and dependence is due to its cognitive enhancing properties, and basic science literature suggests that menthol may also enhance nicotine's acute effect on cognition. AIMS AND METHODS The purpose of this review is to suggest that the cognitive enhancing effects of menthol may be a potentially important neuropsychological mechanism that has yet to be examined. In this narrative review, we provide an overview of basic science studies examining neurobiological and cognitive effects of menthol and menthol cigarette smoking. We also review studies examining menthol essential oils among humans that indicate menthol alone has acute cognitive enhancing properties. Finally, we present factors influencing the rising prevalence of menthol cigarette use among smokers and the importance of this gap in the literature to improve public health and smoking cessation treatment. CONCLUSIONS Despite the compelling evidence for menthol's acute cognitive enhancing and reinforcing effects, this mechanism for sustaining tobacco dependence and cigarette use has yet to be examined and validated among humans. On the basis of the basic science evidence for menthol's neurobiological effects on nicotinic receptors and neurotransmitters, perhaps clarifying menthol's effect on cognitive performance can help to elucidate the complicated literature examining menthol and tobacco dependence. IMPLICATIONS Menthol cigarette use has continued to be a topic of debate among researchers and policy makers, because of its implications for understanding menthol's contribution to nicotine dependence and smoking persistence, as well as its continued use as a prevalent flavoring in tobacco and nicotine products in the United States and internationally. As international tobacco regulation policies have begun to target menthol cigarettes, research studies need to examine how flavoring additives, specifically menthol, may acutely influence neurobiological and cognitive functioning as a potential mechanism of sustained smoking behavior to develop more effective treatments.
Collapse
Affiliation(s)
- Nancy C Jao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marcia M Tan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Phoenix A Matthews
- Department of Health Systems Science, University of Illinois at Chicago, Chicago, IL
| | - Melissa A Simon
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert Schnoll
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Brian Hitsman
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
12
|
Gelfuso EA, Reis SL, Pereira AMS, Aguiar DSR, Beleboni RO. Neuroprotective effects and improvement of learning and memory elicited by erythravine and 11α-hydroxy-erythravine against the pilocarpine model of epilepsy. Life Sci 2020; 240:117072. [PMID: 31751584 DOI: 10.1016/j.lfs.2019.117072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Deficits in cognitive functions are often observed in epileptic patients, particularly in temporal lobe epilepsy (TLE). Evidence suggests that this cognitive decline can be associated with the occurrence of focal brain lesions, especially on hippocampus and cortex regions. We previously demonstrated that the erythrinian alkaloids, (+)-erythravine and (+)-11α-hydroxy-erythravine, inhibit seizures evoked in rats by different chemoconvulsants. AIMS The current study evaluated if these alkaloids would be acting in a neuroprotective way, reducing hippocampal sclerosis, and consequently, improving learning/memory performance. MAIN METHODS Here we confirmed the anticonvulsant effect of both alkaloids by means of the pilocarpine seizure-induced model and also showed that they enhanced spatial learning of rats submitted to the Morris Water Maze test reverting the cognition deficit. Additionally, immunohistochemistry assays showed that neuronal death and glial activation were prevented by the alkaloids in the hippocampus CA1, CA3 and dentate gyrus regions at both hemispheres indistinctly 15 days after status epilepticus induction. KEY FINDINGS Our results show, for the first-time, the improvement on memory/learning elicited by these erythrinian alkaloids. Furthermore, data presented herein explain, at least partially, the cellular mechanism of action of these alkaloids. Together, (+)-erythravine and (+)-11α-hydroxy-erythravine seem to be a promising protective strategy against TLE, comprising three main aspects: neuroprotection, control of epileptic seizures and cognitive improvement. SIGNIFICANCE Moreover, our findings on neuroprotection corroborate the view that seizure frequency and severity, hippocampal lesions and memory deficits are interconnected events.
Collapse
Affiliation(s)
- Erica Aparecida Gelfuso
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Suelen Lorenzato Reis
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Renê Oliveira Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; School of Medicine, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
13
|
Chu X, Tae HS, Xu Q, Jiang T, Adams DJ, Yu R. α-Conotoxin Vc1.1 Structure-Activity Relationship at the Human α9α10 Nicotinic Acetylcholine Receptor Investigated by Minimal Side Chain Replacement. ACS Chem Neurosci 2019; 10:4328-4336. [PMID: 31411453 DOI: 10.1021/acschemneuro.9b00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-Conotoxin Vc1.1 inhibits the nicotinic acetylcholine receptor (nAChR) α9α10 subtype and has the potential to treat neuropathic chronic pain. To date, the crystal structure of Vc1.1-bound α9α10 nAChR remains unavailable; thus, understanding the structure-activity relationship of Vc1.1 with the α9α10 nAChR remains challenging. In this study, the Vc1.1 side chains were minimally modified to avoid introducing large local conformation perturbation to the interactions between Vc1.1 and α9α10 nAChR. The results suggest that the hydroxyl group of Vc1.1, Y10, forms a hydrogen bond with the carbonyl group of α9 N107 and a hydrogen bond donor is required. However, Vc1.1 S4 is adjacent to the α9 D166 and D169, and a positive charge residue at this position increases the binding affinity of Vc1.1. Furthermore, the carboxyl group of Vc1.1, D11, forms two hydrogen bonds with α9 N154 and R81, respectively, whereas introducing an extra carboxyl group at this position significantly decreases the potency of Vc1.1. Second-generation mutants of Vc1.1 [S4 Dab, N9A] and [S4 Dab, N9W] increased potency at the α9α10 nAChR by 20-fold compared with that of Vc1.1. The [S4 Dab, N9W] mutational effects at positions 4 and 9 of Vc1.1 are not cumulative but are coupled with each other. Overall, our findings provide valuable insights into the structure-activity relationship of Vc1.1 with the α9α10 nAChR and will contribute to further development of more potent and specific Vc1.1 analogues.
Collapse
Affiliation(s)
- Xin Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Qingliang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
14
|
Cai F, Xu N, Liu Z, Ding R, Yu S, Dong M, Wang S, Shen J, Tae HS, Adams DJ, Zhang X, Dai Q. Targeting of N-Type Calcium Channels via GABAB-Receptor Activation by α-Conotoxin Vc1.1 Variants Displaying Improved Analgesic Activity. J Med Chem 2018; 61:10198-10205. [DOI: 10.1021/acs.jmedchem.8b01343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fengtao Cai
- Beijing Institute of Biotechnology, Beijing 100071, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Ning Xu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Rong Ding
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Mingxin Dong
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jintao Shen
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xuerong Zhang
- School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
15
|
Grundey J, Thirugnasambandam N, Amu R, Paulus W, Nitsche MA. Nicotinic Restoration of Excitatory Neuroplasticity Is Linked to Improved Implicit Motor Learning Skills in Deprived Smokers. Front Neurol 2018; 9:367. [PMID: 29892258 PMCID: PMC5985290 DOI: 10.3389/fneur.2018.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Nicotine has been shown to modulate neuroplasticity, cognition, and learning processes in smokers and non-smokers. A possible mechanism for its effect on learning and memory formation is its impact on long-term depression and long-term potentiation (LTP). Nicotine abstinence in smokers is often correlated with impaired cognitive performance. As neuroplasticity is closely connected to learning and memory formation, we aimed to explore the effect of nicotine spray administration in deprived smokers on paired-associative stimulation (PAS25)-induced neuroplasticity and on performance of the serial reaction time task (SRTT), a sequential motor learning paradigm. Deprived smokers (n = 12) under placebo medication displayed reduced excitatory neuroplasticity induced by PAS25. Plasticity was restored by nicotine spray administration. Likewise, SRTT-performance improved after nicotine spray administration compared to placebo administration (n = 19). The results indicate a restitutional effect of nicotine spray in deprived smokers on both: LTP-like neuroplasticity and motor learning. These results present a possible explanation for persistence of nicotine addiction and probability of relapse.
Collapse
Affiliation(s)
- Jessica Grundey
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | - Rosa Amu
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Walter Paulus
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany.,Forschungsbereich Psychologie und Neurowissenschaften, Leibniz Research Centre for Working Environment and Human Factors (LG), Dortmund, Germany
| |
Collapse
|
16
|
Skalicka-Wozniak K, Budzynska B, Biala G, Boguszewska-Czubara A. Scopolamine-Induced Memory Impairment Is Alleviated by Xanthotoxin: Role of Acetylcholinesterase and Oxidative Stress Processes. ACS Chem Neurosci 2018; 9:1184-1194. [PMID: 29378112 DOI: 10.1021/acschemneuro.8b00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Xanthotoxin, popularly occurring furanocoumarin, which can be found in plants from the Apiaceae family, was isolated from fruits of Pastinaca sativa L. by mean of high-performance countercurrent chromatography, and its effects on the scopolamine-induced cognitive deficits in male Swiss mice using the passive avoidance (PA) test were evaluated. To measure the acquisition of memory processes, xanthotoxin (1, 2.5, 5 mg/kg) was administered 30 min before PA test and scopolamine was administered 10 min after xanthotoxin. To measure the consolidation of memory processes, xanthotoxin (1 and 2.5 mg/kg) was injected immediately after removing the mouse from the apparatus and 10 min after scopolamine was administered. In subchronic experiments, mice were injected with xanthotoxin (1 mg/kg) or saline, 6 days, twice daily. At 24 h after the last injection of the drugs, the hippocampus and the prefrontal cortex were removed for biochemical assays. The results demonstrated that either single (2.5 and 5 mg/kg) or repeatable (1 mg/kg) administration of xanthotoxin significantly increased index of latency (IL) in both acquisition and consolidation of memory processes, showing some procognitive effects. The behavioral tests also showed that an acute (2.5 mg/kg) and subchronic (1 mg/kg) administration of xanthotoxin prevent memory impairment induced by injection of scopolamine (1 mg/kg). Observed effects could be due to the inhibition of acetylcholinesterase activities and amelioration of oxidative stress processes in the hippocampus and the prefrontal cortex. It was suggested that xanthotoxin could show neuroprotective effect in scopolamine-induced cognitive impairment connected to cholinergic neurotransmission and oxidative stress in the brain structures.
Collapse
Affiliation(s)
- Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Barbara Budzynska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medicinal Chemistry, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
17
|
Chen J, Liu XM, Zhang Y. Venom based neural modulators. Exp Ther Med 2018; 15:615-619. [PMID: 29399064 PMCID: PMC5772594 DOI: 10.3892/etm.2017.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Different types of neuronal nicotinic acetylcholine receptors (nAChRs) are expected to occur in vivo, most structure-activity relationship studies have been carried out for just a few neuronal subtypes. The present review enlightens current aspects of venom modulators of nAChRs. Important electronic databases such as PubMed or Google scholar were explored for the collection of latest studies in the field. Clinical and basic research has shown that cholinergic receptors play a role in several disorders of the nervous system such as chronic pain, Alzheimers disease and addiction to nicotine, alcohol and drugs. Unfortunately, the lack of selective modulators for each subtype of nAChR makes their pharmacological characterization difficult, which has slowed the development of therapeutic nAChR modulators with high selectivity and absence of off-target side-effects. Animal venoms have proven to be an excellent natural source of bioactive molecules with activity against ion channels. The present review concludes that the presence of small-molecule nAChR modulators in spider venoms support the use of venoms as a potential source of novel modulators.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiao-Ming Liu
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuan Zhang
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
18
|
Valentine G, Sofuoglu M. Cognitive Effects of Nicotine: Recent Progress. Curr Neuropharmacol 2018; 16:403-414. [PMID: 29110618 PMCID: PMC6018192 DOI: 10.2174/1570159x15666171103152136] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/11/2017] [Accepted: 07/30/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cigarette smoking is the main cause of preventable death in developed countries. While the direct positive behavioral reinforcing effect of nicotine has historically been considered the primary mechanism driving the development of TUD, accumulating contemporary research suggests that the cognitive-enhancing effects of nicotine may also significantly contribute to the initiation and maintenance of TUD, especially in individuals with pre-existing cognitive deficits. METHODS We provide a selective overview of recent advances in understanding nicotine's effects on cognitive function, a discussion of the role of cognitive function in vulnerability to TUD, followed by an overview of the neurobiological mechanisms underlying the cognitive effects of nicotine. RESULTS Preclinical models and human studies have demonstrated that nicotine has cognitiveenhancing effects. Attention, working memory, fine motor skills and episodic memory functions are particularly sensitive to nicotine's effects. Recent studies have demonstrated that the α4, β2, and α7 subunits of the nicotinic acetylcholine receptor (nAChR) participate in the cognitive-enhancing effects of nicotine. Imaging studies have been instrumental in identifying brain regions where nicotine is active, and research on the dynamics of large-scale networks after activation by, or withdrawal from, nicotine hold promise for improved understanding of the complex actions of nicotine on human cognition. CONCLUSION Because poor cognitive performance at baseline predicts relapse among smokers who are attempting to quit smoking, studies examining the potential efficacy of cognitive-enhancement as strategy for the treatment of TUD may lead to the development of more efficacious interventions.
Collapse
Affiliation(s)
| | - Mehmet Sofuoglu
- Address correspondence to this author at the Yale University School of Medicine, Department of Psychiatry, New Haven, CT 06510, USA; Tel: 1 203 737 4882; Fax: 1 203 737 3591; E-mail:
| |
Collapse
|
19
|
Grundey J, Amu R, Batsikadze G, Paulus W, Nitsche MA. Diverging effects of nicotine on motor learning performance: Improvement in deprived smokers and attenuation in non-smokers. Addict Behav 2017; 74:90-97. [PMID: 28600927 DOI: 10.1016/j.addbeh.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Nicotine modulates cognition and neuroplasticity in smokers and non-smokers. A possible mechanism for its effect on learning and memory performance is its impact on long-term potentiation (LTP) and long-term depression (LTD). As neuroplasticity is closely connected to learning processes, we aimed to explore the effect of nicotine in healthy, young smokers and non-smokers on performance of the serial reaction time task (SRTT), a sequential motor learning paradigm. 20 nicotine-deprived smokers and 20 non-smokers participated in the study and were exposed to nicotine or placebo medication. Deprived smokers under placebo medication displayed reduced performance in terms of reaction time and error rates compared to the non-smoking group. After application of nicotine, performance in smokers improved while it deteriorated in non-smokers. These results indicate a restituting effect of nicotine in smokers in terms of cognitive parameters. This sheds further light on the proposed mechanism of nicotine on learning processes, which might be linked to the addictive component of nicotine, the probability of relapse and thus needs also be addressed in cessation treatment.
Collapse
Affiliation(s)
- J Grundey
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany.
| | - R Amu
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - G Batsikadze
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - M A Nitsche
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany; Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
20
|
McGregor AL, D'Souza G, Kim D, Tingle MD. Varenicline improves motor and cognitive deficits and decreases depressive-like behaviour in late-stage YAC128 mice. Neuropharmacology 2017; 116:233-246. [DOI: 10.1016/j.neuropharm.2016.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 02/03/2023]
|
21
|
Exposure to low doses of 137cesium and nicotine during postnatal development modifies anxiety levels, learning, and spatial memory performance in mice. Food Chem Toxicol 2016; 97:82-88. [PMID: 27590783 DOI: 10.1016/j.fct.2016.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
Radiation therapy is a major cause of long-term complications observed in survivors of pediatric brain tumors. However, the effects of low-doses of ionizing radiation (IR) to the brain are less studied. On the other hand, tobacco is one of the most heavily abused drugs in the world. Tobacco is not only a health concern for adults. It has also shown to exert deleterious effects on fetuses, newborns, children and adolescents. Exposure to nicotine (Nic) from smoking may potentiate the toxic effects induced by IR on brain development. In this study, we evaluated in mice the cognitive effects of concomitant exposure to low doses of internal radiation (137Cs) and Nic during neonatal brain development. On postnatal day 10 (PND10), two groups of C57BL/6J mice were subcutaneously exposed to 137-Cesium (137Cs) (4000 and 8000 Bq/kg) and/or Nic (100 μg/ml). At the age of two months, neurobehavior of mice was assessed. Results showed that exposure to IR-alone or in combination with Nic-increased the anxiety-like of the animals without changing the activity levels. Moreover, exposure to IR impaired learning and spatial memory. However, Nic administration was able to reverse this effect, but only at the low dose of 137Cs.
Collapse
|
22
|
Both pre- and post-synaptic alterations contribute to aberrant cholinergic transmission in superior cervical ganglia of APP(-/-) mice. Neuropharmacology 2016; 110:493-502. [PMID: 27553120 DOI: 10.1016/j.neuropharm.2016.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Though amyloid precursor protein (APP) can potentially be cleaved to generate the pathological amyloid β peptide (Aβ), APP itself plays an important role in regulating neuronal activity. APP deficiency causes functional impairment in cholinergic synaptic transmission and cognitive performance. However, the mechanisms underlying altered cholinergic synaptic transmission in APP knock-out mice (APP(-/-)) are poorly understood. In this study, we conducted in vivo extracellular recording to investigate cholinergic compound action potentials (CAPs) of the superior cervical ganglion (SCG) in APP(-/-) and littermate wild-type (WT) mice. Our results demonstrate that APP not only regulates presynaptic activity, but also affects postsynaptic function at cholinergic synapses in SCG. APP deficiency reduces the number of vesicles in presynaptic terminalsand attenuatesthe amplitude of CAPs, likely due to dysfunction of high-affinity choline transporters. Pharmacological and biochemical examination showed that postsynaptic responsesmediated by α4β2 and α7 nicotinic acetylcholine receptors are reduced in the absence of APP. Our research provides evidences on how APP regulates cholinergic function and therefore may help to identify potential therapeutic targets to treat cholinergic dysfunction associated with Alzheimer's disease pathogenesis.
Collapse
|
23
|
Newman LA, Gold PE. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist. Psychopharmacology (Berl) 2016; 233:925-32. [PMID: 26660295 PMCID: PMC4752895 DOI: 10.1007/s00213-015-4174-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
RATIONALE Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. OBJECTIVES The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. RESULTS Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. CONCLUSIONS These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.
Collapse
Affiliation(s)
- L A Newman
- Department of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, NY, 13244, USA
| | - P E Gold
- Department of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, NY, 13244, USA.
| |
Collapse
|
24
|
Cambiaghi M, Grosso A, Renna A, Concina G, Sacchetti B. Acute administration of nicotine into the higher order auditory Te2 cortex specifically decreases the fear-related charge of remote emotional memories. Neuropharmacology 2015; 99:577-88. [PMID: 26319210 PMCID: PMC4710760 DOI: 10.1016/j.neuropharm.2015.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 01/10/2023]
Abstract
Nicotine elicits several behavioural effects on mood as well as on stress and anxiety processes. Recently, it was found that the higher order components of the sensory cortex, such as the secondary auditory cortex Te2, are essential for the long-term storage of remote fear memories. Therefore, in the present study, we examined the effects of acute nicotine injection into the higher order auditory cortex Te2, on the remote emotional memories of either threat or incentive experiences in rats. We found that intra-Te2 nicotine injection decreased the fear-evoked responses to a tone previously paired with footshock. This effect was cue- and dose-specific and was not due to any interference with auditory stimuli processing, innate anxiety and fear processes, or with motor responses. Nicotine acts acutely in the presence of threat stimuli but it did not determine the permanent degradation of the fear-memory trace, since memories tested one week after nicotine injection were unaffected. Remarkably, nicotine did not affect the memory of a similar tone that was paired to incentive stimuli. We conclude from our results that nicotine, when acting acutely in the auditory cortex, relieves the fear charge embedded by learned stimuli. Nicotine reliefs fear memories. Nicotine acts on long-term memories. Nicotine modulates memory in auditory cortex.
Collapse
Affiliation(s)
- Marco Cambiaghi
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | - Anna Grosso
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | - Giulia Concina
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy; National Institute of Neuroscience, Italy.
| |
Collapse
|
25
|
Kutlu MG, Gould TJ. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochem Pharmacol 2015; 97:498-511. [PMID: 26231942 DOI: 10.1016/j.bcp.2015.07.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
Anxiety disorders are a group of crippling mental diseases affecting millions of Americans with a 30% lifetime prevalence and costs associated with healthcare of $42.3 billion. While anxiety disorders show high levels of co-morbidity with smoking (45.3% vs. 22.5% in healthy individuals), they are also more common among the smoking population (22% vs. 11.1% in the non-smoking population). Moreover, there is clear evidence that smoking modulates symptom severity in patients with anxiety disorders. In order to better understand this relationship, several animal paradigms are used to model several key symptoms of anxiety disorders; these include fear conditioning and measures of anxiety. Studies clearly demonstrate that nicotine mediates acquisition and extinction of fear as well as anxiety through the modulation of specific subtypes of nicotinic acetylcholine receptors (nAChRs) in brain regions involved in emotion processing such as the hippocampus. However, the direction of nicotine's effects on these behaviors is determined by several factors that include the length of administration, hippocampus-dependency of the fear learning task, and source of anxiety (novelty-driven vs. social anxiety). Overall, the studies reviewed here suggest that nicotine alters behaviors related to fear and anxiety and that nicotine contributes to the development, maintenance, and reoccurrence of anxiety disorders.
Collapse
Affiliation(s)
| | - Thomas J Gould
- Temple University, Weiss Hall, Philadelphia, PA 19122, USA.
| |
Collapse
|
26
|
Quik M, Bordia T, Zhang D, Perez XA. Nicotine and Nicotinic Receptor Drugs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:247-71. [DOI: 10.1016/bs.irn.2015.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|