1
|
Giongo FK, Gallas-Lopes M, Benvenutti R, Sachett A, Bastos LM, Rosa AR, Herrmann AP. Effects of Taurine in Mice and Zebrafish Behavioral Assays With Translational Relevance to Schizophrenia. Int J Neuropsychopharmacol 2022; 26:125-136. [PMID: 36239455 PMCID: PMC9926054 DOI: 10.1093/ijnp/pyac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Altered redox state and developmental abnormalities in glutamatergic and GABAergic transmission during development are linked to the behavioral changes associated with schizophrenia. As an amino acid that exerts antioxidant and inhibitory actions in the brain, taurine is a potential candidate to modulate biological targets relevant to this disorder. Here, we investigated in mice and zebrafish assays whether taurine prevents the behavioral changes induced by acute administration of MK-801 (dizocilpine), a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist. METHODS C57BL/6 mice were i.p. administered with saline or taurine (50, 100, and 200 mg/kg) followed by MK-801 (0.15 mg/kg). Locomotor activity, social interaction, and prepulse inhibition of the acoustic startle reflex were then assessed in different sets of animals. Zebrafish were exposed to tank water or taurine (42, 150, and 400 mg/L) followed by MK-801 (5 µM); social preference and locomotor activity were evaluated in the same test. RESULTS MK-801 induced hyperlocomotion and disrupted sensorimotor gating in mice; in zebrafish, it reduced sociability and increased locomotion. Taurine was mostly devoid of effects and did not counteract NMDA antagonism in mice or zebrafish. DISCUSSION Contradicting previous clinical and preclinical data, taurine did not show antipsychotic-like effects in the present study. However, it still warrants consideration as a preventive intervention in animal models relevant to the prodromal phase of schizophrenia; further studies are thus necessary to evaluate whether and how taurine might benefit patients.
Collapse
Affiliation(s)
- Franciele Kich Giongo
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia,Programa de Pós-Graduação em Farmacologia e Terapêutica
| | - Matheus Gallas-Lopes
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia
| | | | | | - Leonardo Marensi Bastos
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia
| | - Adriane Ribeiro Rosa
- Programa de Pós-Graduação em Farmacologia e Terapêutica,Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Herrmann
- Correspondence: Ana Paula Herrmann, PhD, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil ()
| |
Collapse
|
2
|
Madbouly N, Azmy A, Salama A, El-Amir A. The nephroprotective properties of taurine-amikacin treatment in rats are mediated through HSP25 and TLR-4 regulation. J Antibiot (Tokyo) 2021; 74:580-592. [PMID: 34253885 DOI: 10.1038/s41429-021-00441-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Amikacin (AMK) is one of the most effective aminoglycoside antibiotics. However, nephrotoxicity is a major deleterious and dose-limiting side effect associated with its clinical use especially in high dose AMK-treated patients. The present study assessed the ability of taurine (TAU) to alleviate or prevent AMK-induced nephrotoxicity if co-administrated with AMK focusing on inflammation, apoptosis, and fibrosis. Male Sprague Dawley rats were assigned to six equal groups. Group 1: rats received saline (normal control), group 2: normal rats received 50 mg kg-1 TAU intraperitoneally (i.p.). Groups 3 and 4: received AMK (25 or 50 mg kg-1; i.p.). Groups 5 and 6: received TAU (50 mg kg-1; i.p.) concurrently with AMK (25 or 50 mg kg-1; i.p.) for 3 weeks. AMK-induced nephrotoxicity is evidenced by elevated levels of serum creatinine (CRE), blood urea nitrogen (BUN), and uric acid (UA). Histopathological investigations provoked damaging changes in the renal tissues. Heat shock proteins (HSP)25 and Toll-like receptor-4 (TLR-4) elevated levels were involved in the induction of inflammatory reactions and focal fibrosis. The improved activation of TLR-4 may stimulate monocytes to upgrade Interleukin (IL)-18 production rather than IL-10. TAU proved therapeutic effectiveness against AMK-induced renal toxicity through downregulation of HSP25, TLR-4, caspase-3, and IL-18 with up-regulation of IL-10 levels.
Collapse
Affiliation(s)
- Neveen Madbouly
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Ayman Azmy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Azza El-Amir
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ren S, Wei Y, Niu M, Li R, Wang R, Wei S, Wen J, Wang D, Yang T, Chen X, Wu S, Tong Y, Jing M, Li H, Wang M, Zhao Y. Mechanism of rutaecarpine on ethanol-induced acute gastric ulcer using integrated metabolomics and network pharmacology. Biomed Pharmacother 2021; 138:111490. [PMID: 33773465 DOI: 10.1016/j.biopha.2021.111490] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022] Open
Abstract
This study was aimed to explore the mechanism of rutaecarpine (RUT) on ethanol-induced gastric ulcer (GU) in mice by integrated approaches. At first, the efficacy was determined through the macroscopic and microscopic state of stomach tissue and the expression levels of GU-related factors. Then, the serum metabolomics method based on UPLC-Q-TOF/MS was used to explore the specific metabolites and metabolic pathways. Finally, the upstream key protein targets of these specific metabolites were analyzed by network pharmacology and verified by PCR to explore the potential mechanism. RUT alleviated the histological and pathological damage of gastric tissue caused by ethanol, and could remarkably ameliorate the level of GU-related factors. Subsequently, a total of 7 potential metabolites involved in 9 metabolic pathways were identified by metabolomics analysis. Then, a 'component-targets-metabolites' interaction network was constructed, and therefore 4 key target proteins (PLA2G1B, PDE5A, MIF and SRC) that may regulate the specific metabolites were obtained. This case was further verified by the results of PCR. ALL the above results strongly demonstrated that RUT exerted a gastroprotective effect against GU. And it is the first time to combine metabolomics combined with network pharmacology to elucidate the mechanism of RUT on GU, which may be related to the regulation of energy metabolism, oxidative stress, and inflammation, and these pathways may be regulated through the upstream protein PLA2G1B, PDE5A, MIF and SRC.
Collapse
Affiliation(s)
- Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ming Niu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ruilin Wang
- Integrative Medical Center, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Tao Yang
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China; College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xing Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shihua Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuling Tong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Manyi Jing
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Haotian Li
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Min Wang
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yanling Zhao
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
4
|
Dynamic Analysis of Metabolic Response in Gastric Ulcer (GU) Rats with Electroacupuncture Treatment Using 1H NMR-Based Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1291427. [PMID: 31143240 PMCID: PMC6501414 DOI: 10.1155/2019/1291427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/09/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Gastric ulcer (GU), a common digestive disease, has a high incidence and seriously endangers health of human. According to the previous studies, it has been proved that electroacupuncture at acupoints of stomach meridian had a good effect on GU. However, there are few published studies on metabolic response in gastric ulcer (GU) rats with electroacupuncture treatment. Herein, we observed the metabolic profiles in biological samples (stomach, liver, and kidney) of GU rats with electroacupuncture treatment by 1H NMR metabolomics combined with pathological examination. The male SD rats were induced by intragastric administration of 70% ethanol after fasting for 24 hours and treated by electroacupuncture at Zusanli (ST36) and Liangmen (ST21) for 1 day, 4 days, or 7 days, respectively. And the conventional histopathological examinations as well as metabolic pathways assays were also performed. We found that GU rats were basically cured after electroacupuncture treatment for 4 days and had a complete recovery after electroacupuncture treatment for 7 days by being modulated comprehensive metabolic changes, involved in the function of neurotransmitters, energy metabolism, cells metabolism, antioxidation, tissue repairing, and other metabolic pathways. These findings may be helpful to facilitate the mechanism elucidating of electroacupuncture treatment on GU.
Collapse
|
5
|
Kilb W. Putative Role of Taurine as Neurotransmitter During Perinatal Cortical Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:281-292. [PMID: 28849463 DOI: 10.1007/978-94-024-1079-2_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurotransmitters and neuronal activity affect neurodevelopmental events like neurogenesis, neuronal migration, apoptosis and differentiation. Beside glutamate and gamma-amino butyric acid, the aminosulfonic acid taurine has been considered as possible neurotransmitter that influences early neuronal development. In this article I review recent studies of our group which demonstrate that taurine can affect a variety of identified neuronal populations in the immature neocortex and directly modulates neuronal activity. These experiments revealed that taurine evoke dose-dependent membrane responses in a variety of neocortical neuron populations, including Cajal-Retzius cells, subplate neurons and GABAergic interneurons. Taurine responses persist in the presence of GABA(A) receptor antagonists and are reduced by the addition of strychnine, suggesting that glycine receptors are involved in taurine-mediated membrane responses. Gramicidin-perforated patch-clamp and cell-attached recordings demonstrated that taurine evokes depolarizing and mainly excitatory membrane responses, in accordance with the high intracellular Cl- concentration in immature neurons. In addition, taurine increases the frequency of postsynaptic GABAergic currents (PSCs) in a considerable fraction of immature pyramidal neurons, indicating a specific activation of presynaptic GABAergic networks projecting toward and exciting pyramidal neurons. In summary, these results suggest that taurine may be critically involved in the regulation of network excitability in the immature neocortex and hippocampus via interactions with glycine receptors.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
6
|
Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H. Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp Hepatol 2018; 4:72-82. [PMID: 29904723 PMCID: PMC6000746 DOI: 10.5114/ceh.2018.75956] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/26/2017] [Indexed: 01/04/2023] Open
Abstract
AIM OF THE STUDY Hepatic encephalopathy and hyperammonemia is a clinical complication associated with liver cirrhosis. The brain is the target organ for ammonia toxicity. Ammonia-induced brain injury is related to oxidative stress, locomotor activity dysfunction, and cognitive deficit, which could lead to permanent brain injury, coma and death if not appropriately managed. There is no promising pharmacological intervention against cirrhosis-associated brain injury. Taurine (TAU) is one of the most abundant amino acids in the human body. Several physiological and pharmacological roles have been attributed to TAU. TAU may act as an antioxidant and is an excellent neuroprotective agent. This study aimed to evaluate the effect of TAU supplementation on cirrhosis-associated locomotor activity disturbances and oxidative stress in the brain. MATERIAL AND METHODS Rats underwent bile duct ligation (BDL) surgery, and plasma and brain ammonia level, plasma biochemical parameters, and rats' locomotor function were monitored. Furthermore, brain tissue markers of oxidative stress were assessed. RESULTS It was found that plasma and brain ammonia was increased, and markers of liver injury were significantly elevated in the cirrhotic group. Impaired locomotor activity was also evident in BDL rats. Moreover, an increase in brain tissue markers of oxidative stress was detected in the brain of cirrhotic animals. It was found that TAU supplementation (50, 100, and 200 mg/kg, gavage) alleviated brain tissue markers of oxidative stress and improved animals' locomotor activity. CONCLUSIONS These data suggest that TAU is a potential protective agent against cirrhosis-associated brain injury.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Department of Animal Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Effects of the Usage of l-Cysteine (l-Cys) on Human Health. Molecules 2018; 23:molecules23030575. [PMID: 29510494 PMCID: PMC6017824 DOI: 10.3390/molecules23030575] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
This review summarizes recent knowledge about the use of the amino acid l-Cysteine (l-Cys) through diet, nutritional supplements or drugs with the aim to improve human health or treat certain diseases. Three databases (PubMed, Scopus, and Web of Science) and different keywords have been used to create a database of documents published between 1950 and 2017 in scientific journals in English or Spanish. A total of 60,885 primary publications were ultimately selected to compile accurate information about the use of l-Cys in medicine and nutritional therapies and to identify the reported benefits of l-Cys on human health. The number of publications about the use of l-Cys for these purposes has increased significantly during the last two decades. This increase seems to be closely related to the rise of nutraceutical industries and personalized medicine. The main evidence reporting benefits of l-Cys usage is summarized. However, the lack of accurate information and studies based on clinical trials hampers consensus among authors. Thus, the debate about the role and effectiveness of supplements/drugs containing l-Cys is still open.
Collapse
|
8
|
Kilb W, Fukuda A. Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Front Cell Neurosci 2017; 11:328. [PMID: 29123472 PMCID: PMC5662885 DOI: 10.3389/fncel.2017.00328] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurodevelopmental events and the regulation of neuronal activity during early developmental epochs. The current knowledge is that taurine lacks a synaptic release mechanism but is released by volume-sensitive organic anion channels and/or a reversal of the taurine transporter. Extracellular taurine affects neurons and neuronal progenitor cells mainly via glycine, GABA(A), and GABA(B) receptors with considerable receptor and subtype-specific affinities. Taurine has been shown to directly influence neurogenesis in vitro as well as neuronal migration in vitro and in vivo. It provides a depolarizing signal for a variety of neuronal population in the immature central nervous system, thereby directly influencing neuronal activity. While in the neocortex, taurine probably enhance neuronal activity, in the immature hippocampus, a tonic taurinergic tone might be necessary to attenuate activity. In summary, taurine must be considered as an essential modulator of neurodevelopmental events, and possible adverse consequences on fetal and/or early postnatal development should be evaluated for pharmacological therapies affecting taurinergic functions.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Li XW, Gao HY, Liu J. The role of taurine in improving neural stem cells proliferation and differentiation. Nutr Neurosci 2017; 20:409-415. [PMID: 26906683 DOI: 10.1080/1028415x.2016.1152004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Taurine is one of the most abundant amino acids in the central nervous system and has important functions in the promotion of brain development. This study aimed to determine the mechanistic role of taurine in improving neuronal proliferation, stem cell proliferation, and neural differentiation. METHODS The data for this review were primarily retrieved from the PubMed database from 1985 to 2015 in English. The search string included the keywords taurine, brain development, neuronal, stem cell, proliferation, differentiation, and others. Relevant publications were identified, retrieved, and reviewed. RESULTS This review introduces the source, function, and mechanisms of taurine in brain development and provides additional detail regarding the mechanistic role of taurine in improving neuronal proliferation, stem cell proliferation, and neural differentiation. Many studies concerning these aspects are discussed. CONCLUSIONS Taurine plays an important role in brain development, including neuronal proliferation, stem cell proliferation, and differentiation, via several mechanisms. Taurine can be directly used in clinical applications to improve brain development because it has no toxic effects on humans.
Collapse
Affiliation(s)
- Xiang-Wen Li
- a Department of Neonatology & NICU of Bayi Children's Hospital , the Army General Hospital of the Chinese PLA , Beijing 100700 , China
- b Graduate School of the Liaoning Medical College , Jinzhou City 121001 , Liaoning province , China
| | - Hong-Yan Gao
- c Department of Scientific Research , the Army General Hospital of the Chinese PLA , Beijing 100700 , China
| | - Jing Liu
- a Department of Neonatology & NICU of Bayi Children's Hospital , the Army General Hospital of the Chinese PLA , Beijing 100700 , China
| |
Collapse
|
10
|
Vogel KR, Arning E, Bottiglieri T, Gibson KM. Multicompartment analysis of protein-restricted phenylketonuric mice reveals amino acid imbalances in brain. J Inherit Metab Dis 2017; 40:227-235. [PMID: 27761676 DOI: 10.1007/s10545-016-9984-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND The mainstay of therapy for phenylketonuria (PKU) remains dietary protein restriction. Developmental and neurocognitive outcomes for patients, however, remain suboptimal. We tested the hypothesis that mice with PKU receiving protein-restricted diets would reveal disruptions of brain amino acids that shed light on these neurocognitive deficits. METHOD Phenylalanine hydroxylase-deficient (PKU) mice and parallel controls (both wild-type and heterozygous) were fed custom diets containing 18, 6, and 4 % protein for 3 weeks, after which tissues (brain, liver, sera) were collected for amino acid analysis profiling. RESULTS Phenylalanine (phe) was increased in all tissues (p < 0.0001) of PKU mice and improved with protein restriction. In sera, decreased tyrosine (p < 0.01) was corrected (defined as not significantly different from the level in control mice receiving 18 % chow) with protein restriction, whereas protein restriction significantly increased many other amino acids. A similar trend for increased amino acid levels with protein restriction was also observed in liver. In brain, the effects of protein restriction on large neutral amino acids (LNAAs) were variable, with some deficit correction (threonine, methionine, glutamine) and no correction of tyrosine under any dietary paradigm. Protein restriction (4 % diet) in PKU mice significantly decreased lysine, arginine, taurine, glutamate, asparagine, and serine which had been comparable to control mice under 18 % protein intake. CONCLUSION Depletion of taurine, glutamate, and serine in the brain of PKU mice with dietary protein restriction may provide new insight into neurocognitive deficits of PKU.
Collapse
Affiliation(s)
- Kara R Vogel
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Pharmaceutical and Biomedical Sciences Building, Room 347, 412 E. Spokane Falls Blvd, Spokane, WA, 99204, USA
| | - Erland Arning
- Kimberly H. Courtwright and Joseph W. Summers Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Kimberly H. Courtwright and Joseph W. Summers Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, USA
| | - K Michael Gibson
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Pharmaceutical and Biomedical Sciences Building, Room 347, 412 E. Spokane Falls Blvd, Spokane, WA, 99204, USA.
| |
Collapse
|
11
|
|