1
|
Rarokar N, Yadav S, Saoji S, Bramhe P, Agade R, Gurav S, Khedekar P, Subramaniyan V, Wong LS, Kumarasamy V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int J Pharm X 2024; 7:100231. [PMID: 38322276 PMCID: PMC10844979 DOI: 10.1016/j.ijpx.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Over the last two decades, researchers have paid more attention to magnetic nanosystems due to their wide application in diverse fields. The metal nanomaterials' antimicrobial and biocidal properties make them an essential nanosystem for biomedical applications. Moreover, the magnetic nanosystems could have also been used for diagnosis and treatment because of their magnetic, optical, and fluorescence properties. Superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) are the most widely used magnetic nanosystems prepared by a simple process. By surface modification, researchers have recently been working on conjugating metals like silica, copper, and gold with magnetic nanosystems. This hybridization of the nanosystems modifies the structural characteristics of the nanomaterials and helps to improve their efficacy for targeted drug and gene delivery. The hybridization of metals with various nanomaterials like micelles, cubosomes, liposomes, and polymeric nanomaterials is gaining more interest due to their nanometer size range and nontoxic, biocompatible nature. Moreover, they have good injectability and higher targeting ability by accumulation at the target site by application of an external magnetic field. The present article discussed the magnetic nanosystem in more detail regarding their structure, properties, interaction with the biological system, and diagnostic applications.
Collapse
Affiliation(s)
- Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna MIDC, Nagpur 440016, India
| | - Sakshi Yadav
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Pratiksha Bramhe
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Rishabh Agade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403 001, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Lumata JL, Hagge LM, Gaspar MA, Trashi I, Ehrman RN, Koirala S, Chiev AC, Wijesundara YH, Darwin CB, Pena S, Wen X, Wansapura J, Nielsen SO, Kovacs Z, Lumata LL, Gassensmith JJ. TEMPO-conjugated tobacco mosaic virus as a magnetic resonance imaging contrast agent for detection of superoxide production in the inflamed liver. J Mater Chem B 2024; 12:3273-3281. [PMID: 38469725 DOI: 10.1039/d3tb02765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jenica L Lumata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Laurel M Hagge
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Miguel A Gaspar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Alyssa C Chiev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Cary B Darwin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Salvador Pena
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Janaka Wansapura
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Lloyd L Lumata
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
- Department of Physics, The University of Texas at Dallas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
- Department of Bioengineering, The University of Texas at Dallas, USA
| |
Collapse
|
3
|
Tabassum N, Singh V, Chaturvedi VK, Vamanu E, Singh MP. A Facile Synthesis of Flower-like Iron Oxide Nanoparticles and Its Efficacy Measurements for Antibacterial, Cytotoxicity and Antioxidant Activity. Pharmaceutics 2023; 15:1726. [PMID: 37376174 DOI: 10.3390/pharmaceutics15061726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this study was to investigate the rhombohedral-structured, flower-like iron oxide (Fe2O3) nanoparticles that were produced using a cost-effective and environmentally friendly coprecipitation process. The structural and morphological characteristics of the synthesized Fe2O3 nanoparticles were analyzed using XRD, UV-Vis, FTIR, SEM, EDX, TEM, and HR-TEM techniques. Furthermore, the cytotoxic effects of Fe2O3 nanoparticles on MCF-7 and HEK-293 cells were evaluated using in vitro cell viability assays, while the antibacterial activity of the nanoparticles against Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) was also tested. The results of our study demonstrated the potential cytotoxic activity of Fe2O3 nanoparticles toward MCF-7 and HEK-293 cell lines. The antioxidant potential of Fe2O3 nanoparticles was evidenced by the 1,1-diphenyl-2-picrylhydrazine (DPPH) and nitric oxide (NO) free radical scavenging assays. In addition, we suggested that Fe2O3 nanoparticles could be used in various antibacterial applications to prevent the spread of different bacterial strains. Based on these findings, we concluded that Fe2O3 nanoparticles have great potential for use in pharmaceutical and biological applications. The effective biocatalytic activity of Fe2O3 nanoparticles recommends its use as one of the best drug treatments for future views against cancer cells, and it is, therefore, recommended for both in vitro and in vivo in the biomedical field.
Collapse
Affiliation(s)
- Nazish Tabassum
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Virendra Singh
- Centre for Interdisciplinary Research in Basics Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Mohan P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
4
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
5
|
Magnetic Nanostructures for Cancer Theranostic Applications. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00224-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Modak M, Bobbala S, Lescott C, Liu YG, Nandwana V, Dravid VP, Scott EA. Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55584-55595. [PMID: 33259182 DOI: 10.1021/acsami.0c15920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic nanostructures (MNS) have a wide range of biological applications due to their biocompatibility, superparamagnetic properties, and customizable composition that includes iron oxide (Fe3O4), Zn2+, and Mn2+. However, several challenges to the biomedical usage of MNS must still be addressed, such as formulation stability, inability to encapsulate therapeutic payloads, and variable clearance rates in vivo. Here, we enhance the utility of MNS during controlled delivery applications via encapsulation within polymeric bicontinuous nanospheres (BCNs) composed of poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-b-PPS) copolymers. PEG-b-PPS BCNs have demonstrated versatile encapsulation and delivery capabilities for both hydrophilic and hydrophobic payloads due to their unique and highly organized cubic phase nanoarchitecture. MNS-embedded BCNs (MBCNs) were thus coloaded with physicochemically diverse molecular payloads using the technique of flash nanoprecipitation and characterized in terms of their structure and in vivo biodistribution following intravenous administration. Retention of the internal aqueous channels and cubic architecture of MBCNs were verified using cryogenic transmission electron microscopy and small-angle X-ray scattering, respectively. MBCNs demonstrated improvement in magnetic resonance imaging (MRI) contrast enhancement (r2 relaxivity) as compared to free MNS, which in combination with scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy evidenced the clustering and continued access to water of MNS following encapsulation. Furthermore, MBCNs were found to be noncytotoxic and able to deliver their hydrophilic and hydrophobic small-molecule payloads both in vitro and in vivo. Finally, the oxidation sensitivity of the hydrophobic PPS block allowed MBCNs to undergo a unique, triggerable transition in morphology into MNS-bearing micellar nanocarriers. In summary, MBCNs are an attractive platform for the delivery of molecular and nanoscale payloads for diverse on-demand and sustained drug delivery applications.
Collapse
Affiliation(s)
- Mallika Modak
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chamille Lescott
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu-Gang Liu
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Vikas Nandwana
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
McLeod SM, Robison L, Parigi G, Olszewski A, Drout RJ, Gong X, Islamoglu T, Luchinat C, Farha OK, Meade TJ. Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41157-41166. [PMID: 32852198 DOI: 10.1021/acsami.0c13571] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gadolinium(III) nanoconjugate contrast agents (CAs) provide significant advantages over small-molecule complexes for magnetic resonance imaging (MRI), namely increased Gd(III) payload and enhanced proton relaxation efficiency (relaxivity, r1). Previous research has demonstrated that both the structure and surface chemistry of the nanomaterial substantially influence contrast. We hypothesized that inserting Gd(III) complexes in the pores of a metal-organic framework (MOF) might offer a unique strategy to further explore the parameters of nanomaterial structure and composition, which influence relaxivity. Herein, we postsynthetically incorporate Gd(III) complexes into Zr-MOFs using solvent-assisted ligand incorporation (SALI). Through the study of Zr-based MOFs, NU-1000 (nano and micronsize particles) and NU-901, we investigated the impact of particle size and pore shape on proton relaxivity. The SALI-functionalized Gd nano NU-1000 hybrid material displayed the highest loading of the Gd(III) complex (1.9 ± 0.1 complexes per node) and exhibited the most enhanced proton relaxivity (r1 of 26 ± 1 mM-1 s-1 at 1.4 T). Based on nuclear magnetic relaxation dispersion (NMRD) analysis, we can attribute the performance of Gd nano NU-1000 to the nanoscale size of the MOF particles and larger pore size that allows for rapid water exchange. We have demonstrated that SALI is a promising method for incorporating Gd(III) complexes into MOF materials and identified crucial design parameters for the preparation of next generation Gd(III)-functionalized MOF MRI contrast agents.
Collapse
Affiliation(s)
- Shaunna M McLeod
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Lee Robison
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alyssa Olszewski
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Riki J Drout
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinyi Gong
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Omar K Farha
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Gupta PK, Dravid VP, De M. Ultrathin Silica‐Coated Iron Oxide Nanoparticles: Size‐Property Correlation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pranshu K. Gupta
- Department of Organic ChemistryIndian Institute of Science Bangalore, Karnataka 560012 India
| | - Vinayak P. Dravid
- Department of Materials Science and EngineeringNorthwestern University Evanston Illinois 60208 United States
| | - Mrinmoy De
- Department of Organic ChemistryIndian Institute of Science Bangalore, Karnataka 560012 India
| |
Collapse
|
9
|
Vieira Rocha C, Costa da Silva M, Bañobre-López M, Gallo J. (Para)magnetic hybrid nanocomposites for dual MRI detection and treatment of solid tumours. Chem Commun (Camb) 2020; 56:8695-8698. [PMID: 32613977 DOI: 10.1039/d0cc03020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a hybrid magnetic nanocomposite (mHNCs-Dox) incorporating a chemotherapeutic drug and dual superparamagnetic and paramagnetic cargo. This system exhibits dual contrast behaviour in magnetic resonance imaging as well as enhanced therapeutic anti-cancer capabilities as a thermo-enhanced chemotherapy effector.
Collapse
Affiliation(s)
- Cátia Vieira Rocha
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | | | | | | |
Collapse
|
10
|
Jiménez-López J, García-Hevia L, Melguizo C, Prados J, Bañobre-López M, Gallo J. Evaluation of Novel Doxorubicin-Loaded Magnetic Wax Nanocomposite Vehicles as Cancer Combinatorial Therapy Agents. Pharmaceutics 2020; 12:E637. [PMID: 32645938 PMCID: PMC7407097 DOI: 10.3390/pharmaceutics12070637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
The development of nanotechnology-based solutions for cancer at a preclinical level advances at an astounding pace. So far, clinical translation of these new developments has not been able to keep the pace due to a range of different reasons. One of them is the mismatch between in vitro and in vivo results coming from the expected difference in complexity. To overcome this problem, extensive characterisation using advanced in vitro models can lead to stronger preliminary data to face in vivo tests. Here, a comprehensive in vitro validation of a combinatorial therapy nanoformulation against solid tumours is presented. The information extracted from the different in vitro models highlights the importance of advanced 3D models to fully understand the potential of this type of complex drugs.
Collapse
Affiliation(s)
- Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Lorena García-Hevia
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- The Scuola Superiore Sant’Anna, the BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| |
Collapse
|
11
|
Nandwana V, Ryoo SR, Zheng T, You MM, Dravid VP. Magnetic Nanostructure-Coated Thermoresponsive Hydrogel Nanoconstruct As a Smart Multimodal Theranostic Platform. ACS Biomater Sci Eng 2019; 5:3049-3059. [DOI: 10.1021/acsbiomaterials.9b00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Zhang J, Wang L, You X, Xian T, Wu J, Pang J. Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives. Curr Top Med Chem 2019; 19:57-73. [PMID: 30686255 DOI: 10.2174/1568026619666190125145836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/27/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Traditional prostate cancer therapy and especially chemotherapy has faced many challenges. Low accumulation levels, rapid clearance or drug resistance at the tumor site have been central to why the effect of chemotherapy drugs has declined. Applications of nanotechnology to biomedicine have enabled the development of nanoparticle therapeutic carriers suited for the delivery of chemotherapeutics in cancer therapy. This review describes the current nature of nanoparticle therapeutic carriers for prostate cancer. It describes typical nanocarriers commonly used for the delivery of chemotherapy or for imaging examination. Targeting strategies and related influencing factors are investigated to find ways of enhancing treatment effects of nanoparticles. The overall purpose of this review is to further understanding and to offer recommendations on the design and development of therapeutic nanoparticles for prostate cancer.
Collapse
Affiliation(s)
- Junfu Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinru You
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Tuzeng Xian
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
13
|
Nandwana V, Zhou R, Mohapatra J, Kim S, Prasad PV, Liu JP, Dravid VP. Exchange Coupling in Soft Magnetic Nanostructures and Its Direct Effect on Their Theranostic Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27233-27243. [PMID: 30036037 DOI: 10.1021/acsami.8b09346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exchange coupling between hard and soft magnetic materials at the nanoscale exhibits novel or improved physical properties for energy and data storage applications. Recently, exchange coupling has also been explored in core/shell magnetic nanostructures (MNS) composed of hard and soft magnetic spinel ferrites, but applications have been limited in biomedicine due to the presence of "toxic" cobalt based ferrites as hard magnetic component. We report core/shell MNS where both core and shell components are soft magnetic ferrites (Fe3O4, MnFe2O4, and Zn0.2Mn0.8Fe2O4) and show that exchange coupling still exists due to the difference in their anisotropy. The physical properties (saturation magnetization, susceptibility, anisotropy, r2 relaxivity, and specific absorption rate) of core/shell MNS are compared with the same size single phase counterparts which excludes any size dependent effect and gives the direct effect of exchange coupling. After optimization of core and shell components and their proportions, we have shown that a core/shell MNS shows significantly higher contrast enhancement and thermal activation properties than their single phase counterparts due to exchange coupling between core and shell ferrites. Our finding provides a novel way to improve theranostic properties of spinel ferrite based MNS while maintaining their biocompatibility.
Collapse
Affiliation(s)
- Vikas Nandwana
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Ruiying Zhou
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Jeotikanta Mohapatra
- Department of Physics , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Sungkyu Kim
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Pottumarthi V Prasad
- Department of Radiology , Northshore University Healthcare , Evanston , Illinois 60201 , United States
| | - J P Liu
- Department of Physics , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Vinayak P Dravid
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| |
Collapse
|
14
|
Microwave-assisted synthesis of ultra-small iron oxide nanoparticles for biomedicine. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted Magnetic Nanotheranostics of Cancer. Molecules 2017; 22:E975. [PMID: 28604617 PMCID: PMC6152710 DOI: 10.3390/molecules22060975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Current advances in targeted magnetic nanotheranostics are summarized in this review. Unique structural, optical, electronic and thermal properties of magnetic materials in nanometer scale are attractive in the field of biomedicine. Magnetic nanoparticles functionalized with therapeutic molecules, ligands for targeted delivery, fluorescent and other chemical agents can be used for cancer diagnostic and therapeutic purposes. High selectivity, small size, and low immunogenicity of synthetic nucleic acid aptamers make them attractive delivery agents for therapeutic purposes. Properties, production and functionalization of magnetic nanoparticles and aptamers as ligands for targeted delivery are discussed herein. In recent years, magnetic nanoparticles have been widely used in diagnostic methods, such as scintigraphy, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), and Raman spectroscopy. Therapeutic purposes of magnetic nanoconstructions are also promising. They are used for effective drug delivery, magnetic mediated hypertermia, and megnetodynamic triggering of apoptosis. Thus, magnetic nanotheranostics opens a new venue for complex differential diagnostics, and therapy of metastatic cancer.
Collapse
Affiliation(s)
- Irina Belyanina
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
| | - Olga Kolovskaya
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Sergey Zamay
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Ana Gargaun
- Independent Researcher Vancouver, Vancouver, BC V6K 1C4, Canada.
| | - Tatiana Zamay
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Anna Kichkailo
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
16
|
Rammohan N, Holbrook RJ, Rotz MW, MacRenaris KW, Preslar AT, Carney CE, Reichova V, Meade TJ. Gd(III)-Gold Nanoconjugates Provide Remarkable Cell Labeling for High Field Magnetic Resonance Imaging. Bioconjug Chem 2017; 28:153-160. [PMID: 27537821 PMCID: PMC5243168 DOI: 10.1021/acs.bioconjchem.6b00389] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In vivo cell tracking is vital for understanding migrating cell populations, particularly cancer and immune cells. Magnetic resonance (MR) imaging for long-term tracking of transplanted cells in live organisms requires cells to effectively internalize Gd(III) contrast agents (CAs). Clinical Gd(III)-based CAs require high dosing concentrations and extended incubation times for cellular internalization. To combat this, we have devised a series of Gd(III)-gold nanoconjugates (Gd@AuNPs) with varied chelate structure and nanoparticle-chelate linker length, with the goal of labeling and imaging breast cancer cells. These new Gd@AuNPs demonstrate significantly enhanced labeling compared to previous Gd(III)-gold-DNA nanoconstructs. Variations in Gd(III) loading, surface packing, and cell uptake were observed among four different Gd@AuNP formulations suggesting that linker length and surface charge play an important role in cell labeling. The best performing Gd@AuNPs afforded 23.6 ± 3.6 fmol of Gd(III) per cell at an incubation concentration of 27.5 μM-this efficiency of Gd(III) payload delivery (Gd(III)/cell normalized to dose) exceeds that of previous Gd(III)-Au conjugates and most other Gd(III)-nanoparticle formulations. Further, Gd@AuNPs were well-tolerated in vivo in terms of biodistribution and clearance, and supports future cell tracking applications in whole-animal models.
Collapse
Affiliation(s)
| | | | - Matthew W. Rotz
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Keith W. MacRenaris
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Adam T. Preslar
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Christiane E. Carney
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Viktorie Reichova
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
17
|
Rammohan N, MacRenaris KW, Moore LK, Parigi G, Mastarone DJ, Manus LM, Lilley LM, Preslar AT, Waters EA, Filicko A, Luchinat C, Ho D, Meade TJ. Nanodiamond-Gadolinium(III) Aggregates for Tracking Cancer Growth In Vivo at High Field. NANO LETTERS 2016; 16:7551-7564. [PMID: 27960515 PMCID: PMC5482002 DOI: 10.1021/acs.nanolett.6b03378] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth, and metastatic potential within the intact organism. Magnetic resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and the absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies. We have developed carbon-based nanodiamond-gadolinium(III) aggregates (NDG) for MR imaging that demonstrated remarkable properties for cell tracking in vivo. First, NDG had high relaxivity independent of field strength, a finding unprecedented for gadolinium(III) [Gd(III)]-nanoparticle conjugates. Second, NDG demonstrated a 300-fold increase in the cellular delivery of Gd(III) compared to that of clinical Gd(III) chelates without sacrificing biocompatibility. Further, we were able to monitor the tumor growth of NDG-labeled flank tumors by T1- and T2-weighted MR imaging for 26 days in vivo, longer than was reported for other MR CAs or nuclear agents. Finally, by utilizing quantitative maps of relaxation times, we were able to describe tumor morphology and heterogeneity (corroborated by histological analysis), which would not be possible with competing molecular imaging modalities.
Collapse
Affiliation(s)
- Nikhil Rammohan
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Keith W. MacRenaris
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Laura K. Moore
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM/CIRMMP) and Department of Chemistry, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Daniel J. Mastarone
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Lisa M. Manus
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Laura M. Lilley
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam T. Preslar
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily A. Waters
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Abigail Filicko
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM/CIRMMP) and Department of Chemistry, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Dean Ho
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
18
|
Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 2016; 12:73-87. [PMID: 27876448 DOI: 10.2217/nnm-2016-0316] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent advances in the development of magnetic nanoparticles (MNPs) have shown promise in the development of new personalized therapeutic approaches for clinical management of cancer patients. The unique physicochemical properties of MNPs endow them with novel multifunctional capabilities for imaging, drug delivery and therapy, which are referred to as theranostics. To facilitate the translation of those theranostic MNPs into clinical applications, extensive efforts have been made on designing and improving biocompatibility, stability, safety, drug-loading ability, targeted delivery, imaging signal and thermal- or photodynamic response. In this review, we provide an overview of the physicochemical properties, toxicity and theranostic applications of MNPs with a focus on magnetic iron oxide nanoparticles.
Collapse
Affiliation(s)
- Lei Zhu
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhiyang Zhou
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Hui Mao
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lily Yang
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Pleskova SN, Gorshkova EN, Novikov VV, Solioz M. Treatment by serum up-conversion nanoparticles in the fluoride matrix changes the mechanism of cell death and the elasticity of the membrane. Micron 2016; 90:23-32. [DOI: 10.1016/j.micron.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/18/2016] [Accepted: 08/16/2016] [Indexed: 12/14/2022]
|
20
|
Nagesh PKB, Johnson NR, Boya VKN, Chowdhury P, Othman SF, Khalilzad-Sharghi V, Hafeez BB, Ganju A, Khan S, Behrman SW, Zafar N, Chauhan SC, Jaggi M, Yallapu MM. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces 2016; 144:8-20. [PMID: 27058278 DOI: 10.1016/j.colsurfb.2016.03.071] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/22/2023]
Abstract
Docetaxel (Dtxl) is currently the most common therapeutic option for prostate cancer (PC). However, adverse side effects and problems associated with chemo-resistance limit its therapeutic outcome in clinical settings. A targeted nanoparticle system to improve its delivery to and activity at the tumor site could be an attractive strategy for PC therapy. Therefore, the objective of this study was to develop and determine the anti-cancer efficacy of a novel docetaxel loaded, prostate specific membrane antigen (PSMA) targeted superparamagnetic iron oxide nanoparticle (SPION) (J591-SPION-Dtxl) formulation for PC therapy. Our results showed the SPION-Dtxl formulation exhibits an optimal particle size and zeta potential, which can efficiently be internalized in PC cells. SPION-Dtxl exhibited potent anti-cancer efficacy via induction of the expression of apoptosis associated proteins, downregulation of anti-apoptotic proteins, and inhibition of chemo-resistance associated protein in PC cell lines. J591-SPION-Dtxl exhibited a profound uptake in C4-2 (PSMA(+)) cells compared to PC-3 (PSMA(-)) cells. A similar targeting potential was observed in ex-vivo studies in C4-2 tumors but not in PC-3 tumors, suggesting its tumor specific targeting. Overall, this study suggests that a PSMA antibody functionalized SPION-Dtxl formulation can be highly useful for targeted PC therapy.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nia R Johnson
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vijaya K N Boya
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Vahid Khalilzad-Sharghi
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bilal B Hafeez
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen W Behrman
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nadeem Zafar
- Department of Pathology, College of Medicine, University of Tennessee at Memphis, Memphis, TN, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
21
|
Nandwana V, Ryoo SR, Kanthala S, De M, Chou SS, Prasad PV, Dravid VP. Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface Coating on Magnetic Resonance Imaging Contrast and Thermal Activation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6953-61. [PMID: 26936392 DOI: 10.1021/acsami.6b01377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Magnetic nanostructures (MNS) have emerged as promising functional probes for simultaneous diagnostics and therapeutics (theranostic) applications due to their ability to enhance localized contrast in magnetic resonance imaging (MRI) and heat under external radio frequency (RF) field, respectively. We show that the "theranostic" potential of the MNS can be significantly enhanced by tuning their core composition and architecture of surface coating. Metal ferrite (e.g., MFe2O4) nanoparticles of ∼8 nm size and nitrodopamine conjugated polyethylene glycol (NDOPA-PEG) were used as the core and surface coating of the MNS, respectively. The composition was controlled by tuning the stoichiometry of MFe2O4 nanoparticles (M = Fe, Mn, Zn, ZnxMn1-x) while the architecture of surface coating was tuned by changing the molecular weight of PEG, such that larger weight is expected to result in longer length extended away from the MNS surface. Our results suggest that both core as well as surface coating are important factors to take into consideration during the design of MNS as theranostic agents which is illustrated by relaxivity and thermal activation plots of MNS with different core composition and surface coating thickness. After optimization of these parameters, the r2 relaxivity and specific absorption rate (SAR) up to 552 mM(-1) s(-1) and 385 W/g were obtained, respectively, which are among the highest values reported for MNS with core magnetic nanoparticles of size below 10 nm. In addition, NDOPA-PEG coated MFe2O4 nanostructures showed enhanced biocompatibility (up to [Fe] = 200 μg/mL) and reduced nonspecific uptake in macrophage cells in comparison to other well established FDA approved Fe based MR contrast agents.
Collapse
Affiliation(s)
- Vikas Nandwana
- Department of Materials Science & Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Soo-Ryoon Ryoo
- Department of Materials Science & Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Shanthi Kanthala
- Department of Materials Science & Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science , Bengaluru, India
| | - Stanley S Chou
- Department of Electronic, Optical and Nano Materials, Sandia National Laboratory , Albuquerque, New Mexico 87185, United States
| | - Pottumarthi V Prasad
- Department of Radiology, Northshore University Healthcare , Evanston, Illinois 60201, United States
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Cheng Y, Muroski ME, Petit DCMC, Mansell R, Vemulkar T, Morshed RA, Han Y, Balyasnikova IV, Horbinski CM, Huang X, Zhang L, Cowburn RP, Lesniak MS. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma. J Control Release 2016; 223:75-84. [PMID: 26708022 PMCID: PMC4724455 DOI: 10.1016/j.jconrel.2015.12.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/27/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
Abstract
Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers.
Collapse
Affiliation(s)
- Yu Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China; The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, United States
| | - Megan E Muroski
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Dorothée C M C Petit
- Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Rhodri Mansell
- Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tarun Vemulkar
- Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Ramin A Morshed
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, United States
| | - Yu Han
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Irina V Balyasnikova
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Craig M Horbinski
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Xinlei Huang
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, United States
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, United States
| | - Russell P Cowburn
- Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Maciej S Lesniak
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|