1
|
Konshina AG, Dubovskii PV, Efremov RG. Stepwise Insertion of Cobra Cardiotoxin CT2 into a Lipid Bilayer Occurs as an Interplay of Protein and Membrane "Dynamic Molecular Portraits". J Chem Inf Model 2020; 61:385-399. [PMID: 33382618 DOI: 10.1021/acs.jcim.0c01137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many peripheral membrane-binding polypeptides(MBPs), especially β-structural ones, the precise molecular mechanisms of membrane insertion remain unclear. In most cases, only the terminal water-soluble and membrane-bound states have been elucidated, whereas potential functionally important intermediate stages are still not understood in sufficient detail. In this study, we present one of the first successful attempts to describe step-by-step embedding of the MBP cardiotoxin 2 (CT2) from cobra Naja oxiana venom into a lipid bilayer at the atomistic level. CT2 possesses a highly conservative and rigid β-structured three-finger fold shared by many other exogenous and endogenous proteins performing a wide variety of functions. The incorporation of CT2 into the lipid bilayer was analyzed via a 2 μs all-atom molecular dynamics (MD) simulation without restraints. This process was shown to occur over a number of distinct steps, while the geometry of initial membrane attachment drastically differs from that of the final equilibrated state. In the latter one, the hydrophobic platform ("bottom") formed by the tips of the three loops is deeply buried into the lipid bilayer. This agrees well with the NMR data obtained earlier for CT2 in detergent micelles. However, the bottom is too bulky to insert itself into the membrane at once. Instead, the gradual immersion of CT2 initiated by the loop-1 was observed. This initial binding stage was also demonstrated in a series of MD runs with varying starting orientations of the toxin with respect to the bilayer surface. Apart from the nonspecific long-range electrostatic attraction and hydrophobic match/mismatch factor, several specific lipid-binding sites were identified in CT2. They were shown to promote membrane insertion by engaging in strong interactions with lipid head groups, fine-tuning the toxin-membrane accommodation. We therefore propose that the toxin insertion relies on the interplay of nonspecific and specific interactions, which are determined by the "dynamic molecular portraits" of the two players, the protein and the membrane. The proposed model does not require protein oligomerization for membrane insertion and can be further employed to design MBPs with predetermined properties with regard to particular membrane targets.
Collapse
Affiliation(s)
- Anastasia G Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia.,National Research University Higher School of Economics, 20 Myasnitskaya str., Moscow 101000, Russia.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
2
|
Fealey ME, Binder BP, Uversky VN, Hinderliter A, Thomas DD. Structural Impact of Phosphorylation and Dielectric Constant Variation on Synaptotagmin's IDR. Biophys J 2019; 114:550-561. [PMID: 29414700 DOI: 10.1016/j.bpj.2017.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 11/28/2022] Open
Abstract
We used time-resolved Förster resonance energy transfer, circular dichroism, and molecular dynamics simulation to investigate the structural dependence of synaptotagmin 1's intrinsically disordered region (IDR) on phosphorylation and dielectric constant. We found that a peptide corresponding to the full-length IDR sequence, a ∼60-residue strong polyampholyte, can sample structurally collapsed states in aqueous solution, consistent with its κ-predicted behavior, where κ is a sequence-dependent parameter that is used to predict IDR compaction. In implicit solvent simulations of this same sequence, lowering the dielectric constant to more closely mimic the environment near a lipid bilayer surface promoted further sampling of collapsed structures. We then examined the structural tendencies of central region residues of the IDR in isolation. We found that the exocytosis-modulating phosphorylation of Thr112 disrupts a local disorder-to-order transition induced by trifluoroethanol/water mixtures that decrease the solution dielectric constant and stabilize helical structure. Implicit solvent simulations on these same central region residues testing the impact of dielectric constant alone converge on a similar result, showing that helical structure is formed with higher probability at a reduced dielectric. In these helical conformers, lysine-aspartic acid salt bridges contribute to stabilization of transient secondary structure. In contrast, phosphorylation results in formation of salt bridges unsuitable for helix formation. Collectively, these results suggest a model in which phosphorylation and compaction of the IDR sequence regulate structural transitions that in turn modulate neuronal exocytosis.
Collapse
Affiliation(s)
- Michael E Fealey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida
| | - Anne Hinderliter
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
3
|
Volynsky PE, Nolde DE, Zakharova GS, Palmer RA, Tonevitsky AG, Efremov RG. Specific refolding pathway of viscumin A chain in membrane-like medium reveals a possible mechanism of toxin entry into cell. Sci Rep 2019; 9:413. [PMID: 30674891 PMCID: PMC6344525 DOI: 10.1038/s41598-018-36310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/19/2018] [Indexed: 11/24/2022] Open
Abstract
How is a water-soluble globular protein able to spontaneously cross a cellular membrane? It is commonly accepted that it undergoes significant structural rearrangements on the lipid-water interface, thus acquiring membrane binding and penetration ability. In this study molecular dynamics (MD) simulations have been used to explore large-scale conformational changes of the globular viscumin A chain in a complex environment – comprising urea and chloroform/methanol (CHCl3/MeOH) mixture. Being well-packed in aqueous solution, viscumin A undergoes global structural rearrangements in both organic media. In urea, the protein is “swelling” and gradually loses its long-distance contacts, thus resembling the “molten globule” state. In CHCl3/MeOH, viscumin A is in effect turned “inside out”. This is accompanied with strengthening of the secondary structure and surface exposure of hydrophobic epitopes originally buried inside the globule. Resulting solvent-adapted models were further subjected to Monte Carlo simulations with an implicit hydrophobic slab membrane. In contrast to only a few point surface contacts in water and two short regions with weak protein-lipid interactions in urea, MD-derived structures in CHCl3/MeOH reveal multiple determinants of membrane interaction. Consequently it is now possible to propose a specific pathway for the structural adaptation of viscumin A with respect to the cell membrane – a probable first step of its translocation into cytoplasmic targets.
Collapse
Affiliation(s)
- Pavel E Volynsky
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia
| | - Dmitry E Nolde
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia
| | - Galina S Zakharova
- Scientific and Research Center "BioClinicum", Ugreshkaya Street, 2/85, Moscow, 115088, Russia
| | - Rex A Palmer
- Department of Crystallography, Biochemical Sciences, Birkbeck College, Malet St, London, WC1E7HX, UK
| | - Alexander G Tonevitsky
- Scientific and Research Center "BioClinicum", Ugreshkaya Street, 2/85, Moscow, 115088, Russia.,National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000, Moscow, Russia
| | - Roman G Efremov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia. .,National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000, Moscow, Russia. .,Moscow Institute of Physics and Technology, Institutsky per., 9, 141700, Dolgoprudnyi, Russia.
| |
Collapse
|
4
|
Lipid vesicles affect the aggregation of 4-hydroxy-2-nonenal-modified α-synuclein oligomers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3060-3068. [PMID: 29960040 DOI: 10.1016/j.bbadis.2018.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) and other synucleinopathies are characterized by accumulation of misfolded aggregates of α-synuclein (α-syn). The normal function of α-syn is still under investigation, but it has been generally linked to synaptic plasticity, neurotransmitter release and the maintenance of the synaptic pool. α-Syn localizes at synaptic terminals where it can bind to synaptic vesicles as well as to other cellular membranes. It has become clear that these interactions have an impact on both α-syn functional role and its propensity to aggregate. In this study, we investigated the aggregation process of α-syn covalently modified with 4-hydroxy-2-nonenal (HNE). HNE is a product of lipid peroxidation and has been implicated in the pathogenesis of different neurodegenerative diseases by modifying the kinetics of soluble toxic oligomers. Although HNE-modified α-syn has been reported to assemble into stable oligomers, we found that slightly acidic conditions promoted further protein aggregation. Lipid vesicles delayed the aggregation process in a concentration-dependent manner, an effect that was observed only when they were added at the beginning of the aggregation process. Co-aggregation of lipid vesicles with HNE-modified α-syn also induced cytotoxic effects on differentiated SHSY-5Y cells. Under conditions in which the aggregation process was delayed cell viability was reduced. By exploring the behavior and potential cytotoxic effects of HNE-α-syn under acidic conditions in relation to protein-lipid interactions our study gives a framework to examine a possible pathway leading from a physiological setting to the pathological outcome of PD.
Collapse
|
5
|
Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc Natl Acad Sci U S A 2017; 114:E6507-E6515. [PMID: 28743750 DOI: 10.1073/pnas.1707120114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase plasma protein that functions in innate immunity and lipid homeostasis. SAA is a protein precursor of reactive AA amyloidosis, the major complication of chronic inflammation and one of the most common human systemic amyloid diseases worldwide. Most circulating SAA is protected from proteolysis and misfolding by binding to plasma high-density lipoproteins. However, unbound soluble SAA is intrinsically disordered and is either rapidly degraded or forms amyloid in a lysosome-initiated process. Although acidic pH promotes amyloid fibril formation by this and many other proteins, the molecular underpinnings are unclear. We used an array of spectroscopic, biochemical, and structural methods to uncover that at pH 3.5-4.5, murine SAA1 forms stable soluble oligomers that are maximally folded at pH 4.3 with ∼35% α-helix and are unusually resistant to proteolysis. In solution, these oligomers neither readily convert into mature fibrils nor bind lipid surfaces via their amphipathic α-helices in a manner typical of apolipoproteins. Rather, these oligomers undergo an α-helix to β-sheet conversion catalyzed by lipid vesicles and disrupt these vesicles, suggesting a membranolytic potential. Our results provide an explanation for the lysosomal origin of AA amyloidosis. They suggest that high structural stability and resistance to proteolysis of SAA oligomers at pH 3.5-4.5 help them escape lysosomal degradation, promote SAA accumulation in lysosomes, and ultimately damage cellular membranes and liberate intracellular amyloid. We posit that these soluble prefibrillar oligomers provide a missing link in our understanding of the development of AA amyloidosis.
Collapse
|
6
|
The Vaccinia Virus H3 Envelope Protein, a Major Target of Neutralizing Antibodies, Exhibits a Glycosyltransferase Fold and Binds UDP-Glucose. J Virol 2016; 90:5020-5030. [PMID: 26937025 PMCID: PMC4859701 DOI: 10.1128/jvi.02933-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The highly conserved H3 poxvirus protein is a major target of the human antibody response against poxviruses and is likely a key contributor to protection against infection. Here, we present the crystal structure of H3 from vaccinia virus at a 1.9-Å resolution. H3 looks like a glycosyltransferase, a family of enzymes that transfer carbohydrate molecules to a variety of acceptor substrates. Like glycosyltransferases, H3 binds UDP-glucose, as shown by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, and this binding requires Mg(2+) Mutation of the glycosyltransferase-like metal ion binding motif in H3 greatly diminished its binding to UDP-glucose. We found by flow cytometry that H3 binds to the surface of human cells but does not bind well to cells that are deficient in surface glycosaminoglycans. STD NMR experiments using a heparin sulfate decasaccharide confirmed that H3 binds heparin sulfate. We propose that a surface of H3 with an excess positive charge may be the binding site for heparin. Heparin binding and glycosyltransferase activity may be involved in the function of H3 in the poxvirus life cycle. IMPORTANCE Poxviruses are under intense research because of bioterrorism concerns, zoonotic infections, and the side effects of existing smallpox vaccines. The smallpox vaccine using vaccinia virus has been highly successful, but it is still unclear why the vaccine is so effective. Studying the antigens that the immune system recognizes may allow a better understanding of how the vaccine elicits immunity and how improved vaccines can be developed. Poxvirus protein H3 is a major target of the immune system. The H3 crystal structure shows that it has a glycosyltransferase protein fold. We demonstrate that H3 binds the sugar nucleotide UDP-glucose, as do glycosyltransferases. Our experiments also reveal that H3 binds cell surface molecules that are involved in the attachment of poxviruses to cells. These structural and functional studies of H3 will help in designing better vaccines and therapeutics.
Collapse
|
7
|
Frame NM, Gursky O. Structure of serum amyloid A suggests a mechanism for selective lipoprotein binding and functions: SAA as a hub in macromolecular interaction networks. FEBS Lett 2016; 590:866-79. [PMID: 26918388 DOI: 10.1002/1873-3468.12116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/19/2023]
Abstract
Serum amyloid A is a major acute-phase plasma protein that modulates innate immunity and cholesterol homeostasis. We combine sequence analysis with x-ray crystal structures to postulate that SAA acts as an intrinsically disordered hub mediating interactions among proteins, lipids and proteoglycans. A structural model of lipoprotein-bound SAA monomer is proposed wherein two α-helices from the N-domain form a concave hydrophobic surface that binds lipoproteins. A C-domain, connected to the N-domain via a flexible linker, binds polar/charged ligands including cell receptors, bridging them with lipoproteins and rerouting cholesterol transport. Our model is supported by the SAA cleavage in the interdomain linker to generate the 1-76 fragment deposited in reactive amyloidosis. This model sheds new light on functions of this enigmatic protein.
Collapse
Affiliation(s)
- Nicholas M Frame
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Jayaraman S, Haupt C, Gursky O. Thermal transitions in serum amyloid A in solution and on the lipid: implications for structure and stability of acute-phase HDL. J Lipid Res 2015; 56:1531-42. [PMID: 26022803 DOI: 10.1194/jlr.m059162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein that circulates mainly on plasma HDL. SAA interactions with its functional ligands and its pathogenic deposition in reactive amyloidosis depend, in part, on the structural disorder of this protein and its propensity to oligomerize. In vivo, SAA can displace a substantial fraction of the major HDL protein, apoA-I, and thereby influence the structural remodeling and functions of acute-phase HDL in ways that are incompletely understood. We use murine SAA1.1 to report the first structural stability study of human plasma HDL that has been enriched with SAA. Calorimetric and spectroscopic analyses of these and other SAA-lipid systems reveal two surprising findings. First, progressive displacement of the exchangeable fraction of apoA-I by SAA has little effect on the structural stability of HDL and its fusion and release of core lipids. Consequently, the major determinant for HDL stability is the nonexchangeable apoA-I. A structural model explaining this observation is proposed, which is consistent with functional studies in acute-phase HDL. Second, we report an α-helix folding/unfolding transition in SAA in the presence of lipid at near-physiological temperatures. This new transition may have potentially important implications for normal functions of SAA and its pathogenic misfolding.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston MA 02118
| | - Christian Haupt
- Institute for Pharmaceutical Biotechnology, University of Ulm, 89081, Ulm, Germany
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston MA 02118
| |
Collapse
|