1
|
Zhang R, Khan D, Muhammad S. Establishment of a novel protocol for assessing the severity of subarachnoid hemorrhage in circle Willis perforation mouse model. Sci Rep 2024; 14:10147. [PMID: 38698100 PMCID: PMC11066000 DOI: 10.1038/s41598-024-60237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
The Circle of Willis perforation (cWp) mouse model is a key tool in subarachnoid hemorrhage (SAH) research; however, inconsistent bleeding volumes can challenge experimental reliability. To address this issue, we introduced the ROB Scoring System, a novel protocol integrating Rotarod Tests (RT), Open-field Tests (OT) video analysis, and daily Body Weight Loss (BWL) monitoring to precisely categorize SAH severity. Forty C57BL/6 mice underwent cWp SAH induction, categorized by ROB into severity subgroups (severe, moderate, mild). Validation compared ROB trends in subgroups, and ROB outcomes with autopsy results on postoperative days three and seven for acute and sub-acute evaluations. Mortality rates were analyzed via the survival log-rank test, revealing a significant difference among SAH subgroups (P < 0.05). Strong correlations between ROB grades and autopsy findings underscored its precision. Notably, the severe group exhibited 100% mortality within 4 days post SAH onset. Single parameters (RT, OT, BWL) were insufficient for distinguishing SAH severity levels. The ROB score represents a significant advancement, offering an objective method for precise categorization and addressing inherent bleeding variations in the cWp SAH model. This standardized protocol enhances the reliability and effectiveness of the SAH translational research, providing a valuable tool for future investigations into this critical area.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Dusseldorf, Mooren Str. 5, 40225, Dusseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Dusseldorf, Mooren Str. 5, 40225, Dusseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Dusseldorf, Mooren Str. 5, 40225, Dusseldorf, Germany.
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
2
|
Pan F, Xu W, Ding J, Wang C. Elucidating the progress and impact of ferroptosis in hemorrhagic stroke. Front Cell Neurosci 2023; 16:1067570. [PMID: 36713782 PMCID: PMC9874704 DOI: 10.3389/fncel.2022.1067570] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Hemorrhagic stroke is a devastating cerebrovascular disease with high morbidity and mortality, for which effective therapies are currently unavailable. Based on different bleeding sites, hemorrhagic stroke can be generally divided into intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), whose pathogenesis share some similarity. Ferroptosis is a recently defined programmed cell deaths (PCDs), which is a critical supplement to the hypothesis on the mechanism of nervous system injury after hemorrhagic stroke. Ferroptosis is characterized by distinctive morphological changes of mitochondria and iron-dependent accumulation of lipid peroxides. Moreover, scientists have successfully demonstrated the involvement of ferroptosis in animal models of ICH and SAH, indicating that ferroptosis is a promising target for hemorrhagic stroke therapy. However, the studies on ferroptosis still faces a serious of technical and theoretical challenges. This review systematically elaborates the role of ferroptosis in the pathogenesis of hemorrhagic stroke and puts forward some opinions on the dilemma of ferroptosis research.
Collapse
Affiliation(s)
- Feixia Pan
- Department of Cardiac Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weize Xu
- Department of Cardiac Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jieying Ding
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chencen Wang
- Department of Pediatrics, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua, China,*Correspondence: Chencen Wang,
| |
Collapse
|
3
|
Zheng ZV, Chen J, Lyu H, Lam SYE, Lu G, Chan WY, Wong GKC. Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc Neurol 2021; 7:62-70. [PMID: 34645687 PMCID: PMC8899684 DOI: 10.1136/svn-2021-001028] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/22/2023] Open
Abstract
Background and purpose Signal transducer and activator of transcription 3 (STAT3) may contribute to the proinflammation in the central nervous system diseases by modulating the microglial responses. Thus, this study was intended to investigate the effect of STAT3 on microglia-dependent neuroinflammation and functional outcome after experimental subarachnoid haemorrhage (SAH). Methods The SAH model was established by endovascular perforation in the mouse. Real-time PCR (RtPCR) and western blot were used to examine the dynamic STAT3 signalling pathway responses after SAH. To clarify the role of the STAT3 signalling pathway in the microglia-dependent neuroinflammation after SAH, the microglia-specific STAT3 knockout (KO) mice were generated by the Cre-LoxP system. The neurological functions were assessed by Catwalk and Morris water maze tests. Neuronal loss after SAH was determined by immunohistochemistry staining. Microglial polarisation status after STAT3 KO was then examined by RtPCR and immunofluorescence. Results The STAT3 and Janus kinase-signal transducer 2 activated immediately with the upregulation and phosphorylation after SAH. Downstream factors and related mediators altered dynamically and accordingly. Microglial STAT3 deletion ameliorated the neurological impairment and alleviated the early neuronal loss after SAH. To investigate the underlying mechanism, we examined the microglial reaction after STAT3 KO. STAT3 deletion reversed the increase of microglia after SAH. Loss of STAT3 triggered the early morphological changes of microglia and primed microglia from M1 to M2 polarisation. Functionally, microglial STAT3 deletion suppressed the SAH-induced proinflammation and promoted the anti-inflammation in the early phase. Conclusions STAT3 is closely related to the microglial polarisation transition and modulation of microglia-dependent neuroinflammation. Microglial STAT3 deletion improved neurological function and neuronal survival probably through promoting M2 polarisation and anti-inflammatory responses after SAH. STAT3 may serve as a promising therapeutic target to alleviate early brain injury after SAH.
Collapse
Affiliation(s)
- Zhiyuan Vera Zheng
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Junfan Chen
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hao Lyu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sin Yu Erica Lam
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gang Lu
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wai Yee Chan
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - George K C Wong
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
4
|
Zheng ZY, Lu G, Xiong ZQ, Leung CK, Su XW, Li T, Poon WS, Chan WY, Wong GKC. Integrated analysis of gait parameters and gene expression profiles in a murine model of subarachnoid hemorrhage. GENES BRAIN AND BEHAVIOR 2021; 20:e12728. [PMID: 33641236 DOI: 10.1111/gbb.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022]
Abstract
Gait analysis has been widely used to examine the behavioral presentation of numerous neurological disorders. Thorough murine model evaluation of the subarachnoid hemorrhage (SAH)-associated gait deficits is missing. This study measures gait deficits using a clinically relevant murine model of SAH to examine associations between gait variability and SAH-associated gene expressions. A total of 159 dynamic and static gait parameters from the endovascular perforation murine model for simulating clinical human SAH were determined using the CatWalk system. Eighty gait parameters and the mRNA expression levels of 35 of the 88 SAH-associated genes were differentially regulated in the diseased models. Totals of 42 and 38 gait parameters correlated with the 35 SAH-associated genes positively and negatively with Pearson's correlation coefficients of >0.7 and <-0.7, respectively. p-SP1453 expression in the motor cortex in SAH animal models displays a significant correlation with a subset of gait parameters associated with muscular strength and coordination of limb movements. Our data highlights a strong correlation between gait variability and SAH-associated gene expression. p-SP1453 expression could act as a biomarker to monitor SAH pathological development and a therapeutic target for SAH.
Collapse
Affiliation(s)
- Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi Qiang Xiong
- Bioinformatics Unit, SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong, China
| | - Chi Kwan Leung
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xian Wei Su
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tu Li
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Chen J, Wong GKC. Microglia accumulation and activation after subarachnoid hemorrhage. Neural Regen Res 2021; 16:1531-1532. [PMID: 33433468 PMCID: PMC8323694 DOI: 10.4103/1673-5374.303028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Junfan Chen
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Zheng ZV, Lam PK, Poon WS, Wong KCG. The Time Course of Cognitive Deficits in Experimental Subarachnoid Hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2019; 127:121-125. [PMID: 31407072 DOI: 10.1007/978-3-030-04615-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke type. Approximately 50% of survivors suffer from the permanent disability, caused by the cognitive deficits. To enrich the pre-clinical research on the neurological deficits after SAH, we investigate the temporal cognitive deficits and the longitudinal course of cognitive recovery in endovascular perforation SAH murine model. The SAH mice show reproducible body weakness and headache-symbolized moaning symptoms, which is closed to clinical patients. SAH mice exhibit significantly impaired cognitive function in domains of learning ability, short-term and long-term memory. The cognitive deficits occur mostly in the early phase and recover gradually till day 10 after SAH. The systematical assessments of cognitive function after experimental aneurysmal SAH elucidate the time course of cognitive deficits and provide the time window of potential interventions.
Collapse
Affiliation(s)
- Zhiyuan Vera Zheng
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ping Kuen Lam
- Department of Surgery, Chow Tai Fook-Cheng Yu Tung Surgical Stem cell Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Kwok Chu George Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
7
|
Zheng ZV, Lyu H, Lam SYE, Lam PK, Poon WS, Wong GKC. The Dynamics of Microglial Polarization Reveal the Resident Neuroinflammatory Responses After Subarachnoid Hemorrhage. Transl Stroke Res 2019; 11:433-449. [PMID: 31628642 DOI: 10.1007/s12975-019-00728-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 01/06/2023]
Abstract
Neuroinflammation plays a critical role in the pathogenesis of subarachnoid hemorrhage (SAH). Microglia, as the resident immune cells, orchestrate neuroinflammation distinctly in neurological diseases with different polarization statuses. However, microglial polarizations in the neuroinflammatory responses after SAH are not fully understood. In this study, we investigated the dynamics of microglial reaction in an endovascular perforated SAH model. By using the Cx3cr1GFP/GFP Ccr2RFP/RFP transgenic mice, we found that the reactive immune cells were largely from resident microglia pool rather than infiltrating macrophages. Immunostaining and real-time PCR were employed to analyze the temporal microglial polarization and the resulting inflammatory responses. Our results showed that microglia accumulated immediately after SAH with a centrifugal spreading through the Cortex Adjacent to the Perforated Site (CAPS) to the remote motor cortex. Microglia polarized dynamically from M1 to M2 phenotype along with the morphological transformation from ramified to amoeboid shapes. The ramified microglia demonstrated the M1 property, which suggested the function-related microglial polarization occurred prior to morphological transformation after SAH. Bipolar-shaped microglia appeared as the intermediate and transitional status with the capacity of bidirectional polarization. The microglial polarization status is distinct in molecular inflammatory responses; M1-related pro-inflammation was predominant in the early phase and subsequently transited to the M2-related anti-inflammation. The systematic characterization of the dynamics of microglial polarization in this study contributes to the understanding of the origin of neuroinflammatory responses after SAH and provides key foundation for further investigations to develop target treatment.
Collapse
Affiliation(s)
- Zhiyuan Vera Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sin Yu Erica Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ping Kuen Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China. .,Department of Surgery, Prince of Wales Hospital, 4/F, Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China.
| |
Collapse
|
8
|
Peng J, Wu Y, Pang J, Sun X, Chen L, Chen Y, Tang J, Zhang JH, Jiang Y. Single clip: An improvement of the filament-perforation mouse subarachnoid haemorrhage model. Brain Inj 2018; 33:701-711. [PMID: 30296175 DOI: 10.1080/02699052.2018.1531310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yue Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|